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Rigid analysis was created to provide
some coherence in an otherwise totally

disconnected p-adic realm. Still, it is often
left to Frobenius to quell the rebellious

outer provinces.
– Robert F. Coleman –





Abstract
Master Thesis

p-adic Abelian Integrals: from Theory to Practice
by Leonardo Colò

Let K be a complete subfield of Cp. Consider a rigid space X over K with good
reduction and a differential of the second kind ω over X . Coleman theory of p-adic
integration tells us how to give a meaning to an expression of the form

ż Q

P

ω P,Q P XpKqzpωq8

The work of Coleman relies on using the Dwork principle of continuation along Frobenius
to overcome the topological problems coming from the ultrametric nature of K .

Between 2006 and 2011, K.S. Kedlaya and J. Balakrishnan have constructed algo-
rithms to compute explicitly Coleman’s integrals on hyperelliptic curves and, together
with R. Bradshaw, they have implemented these methods in SAGE.

In this thesis, I study the theory of Coleman both from the theoretical and the
algorithmic point of view and I provide the results of some explicit computations.

After a review of some fundamental ideas in rigid geometry, I present the theory of
Coleman as it appears in his original articles. The second part of this work is devoted
to the computational approach: I describe the ideas of Kedlaya and Balakrishnan and
I produce some concrete examples. Finally, the last Chapter deals with one application
of Coleman’s integrals: I study the method of Chabauty and Coleman and I show how
it can be used to effectively detect rational points on curves.
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Introduction

Over the last century, p-adic numbers and p-adic analysis have started playing an
important role in number theory. Suppose we have an algebraic variety X over R; it is
well known that XpRq or XpCq, the set of points on X valued on R or C respectively,
form a real or complex variety on which we are perfectly able to integrate.

The situation changed with the introduction of p-adic numbers by K. Hensel in 1897.
The German mathematician developed his theory, based on the work of E. Kummer, in
analogy with the relation between the ring of polynomials Crxs and its field of fractions
Cpxq. The result was a set of formal expansions

`8
ÿ

něn0

anp
n ai P Z, 0 ď ai ă p

which turns out to have the structure of a field and, nowadays, we denote Qp, the field
of p-adic numbers.

The definition of Hensel was improved by A. Ostrowski (1918) who proved that any
absolute value on Q is equivalent either to the standard one or to a p-adic absolute
value. Completing Q with respect to the latter, we recover the field of p-adic numbers
discovered by Hensel.

The work of Ostrowski allowed mathematicians to ask whether the well-known prop-
erties of real numbers (the completion of Q with respect to | ¨ |8) were inherited also
by Qp. In particular, one of the most important area of study was the possibility of
constructing a theory of analytic functions over p-adic fields. If at the beginning the
question might have been motivated only by curiosity, with the progress of Algebraic
Geometry it became clear that the question was of central importance.

However, in 1944, M. Krasner introduced the concept of ultrametric fields, to which
p-adic numbers belong, and proved (1954) that the topology of these objects is totally
disconnected making clear the fact that to obtain a global theory of functions over p-adic
fields there was the need of different ideas from the ones used in the real and complex
case.

The turning point was the work of the American mathematician J. Tate. He un-
derstood that algebraic methods were somehow unsuitable to such a description and
focused the attention on an analytic approach. Let K be a complete non-archimedean
field; Tate introduced the algebra

O
`

Kˆ
˘

“

#

ÿ

νPZ

cνζ
ν lim

|ν|Ñ`8
|cν |r

ν
“ 0 @r ą 0

+

of Laurent expansions converging on Kˆ. He constructed its field of fractions MpKˆq “

Frac pOpKˆqq and defined, for every q P Kˆ with |q| ă 1, the set
Mq

pKˆ
q “

 

f PMpKˆ
q fpqζq “ fpζq

(
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INTRODUCTION

He observed that MqpKˆq is an elliptic function field and the set of K-points of the
associated elliptic curve EK coincides with the quotient Kˆ{qZ (Tate elliptic curve). To
describe the nature of this elliptic curve, Tate realized that algebraic geometry was
ineffective. In 1961 he published an important article [Tat] developing a theory that was
able to give a meaning to the quotient Kˆ{qZ. Nowadays we use to indicate his work
as the birth of Rigid Geometry.

The theory of Tate was eventually enriched and expanded by D. Mumford, who
generalized the construction of Tate to higher dimensional abelian varieties (1972), M.
Raynaud, who introduce Formal Geometry (1974) and G. Faltings (1990).

Although a theory of analytic functions over an ultrametric field K had been de-
veloped, the nature of the topology on K still made difficult to construct a theory of
integration: the fact that the p-adic topology is totally disconnected makes impossible
to pass from local to global as we do in the complex case.

The situation changed in the 80’s with the work of the American mathematician R.
Coleman. He was the first to propose a solution to the problem of constructing a global
theory of integration on rigid spaces using the Dwork principle of “continuation along
Frobenius”.

The idea appeared first in [Col1] (1982) under the form of integration on subsets of
P1; at the end of the article Coleman announced his intention to develop this work to a
theory of p-adic abelian integrals on arbitrary varieties.1

In fact, in [Col2] (1985), he established the basis for an integration theory for differ-
ential of the II kind on abelian varieties of arbitrary dimension having good reduction
at p.

Finally, in a joint work with E. de Shalit (1988, [CdS]), the approach was enlarged
to a wider range of differentials on curves.

Coleman theory was then extended by Y. Zarhin (“Local heights and abelian vari-
eties”, 1988/1989) and P. Colmez (“Périodes p-adiques des variétés abéliennes”, 1992
and [Colm], 1998); they were able to eliminate the hypothesis of good reduction and,
equally remarkable, they did not pass through rigid geometry.

During the last 20 years, the work of Coleman has been generalized by A. Besser
(“A generalization of Coleman’s p-adic integration theory”, 1999) using methods of p-
adic cohomology, V. Vologodsky. (“Hodge structure on the fundamental group and its
application to p-adic integration”, 2003) and V.G. Berkovich (“Integration of one-forms
on p-adic analytic spaces”, 2007).

Apart from their purely theoretical interest, Coleman integrals have a great impor-
tance because of several applications introduced during the years:

- Torsion Points on Curves. This was Coleman’s original application of p-adic in-
tegration. He proved (after Raynaud) the Manin-Mumford conjecture asserting
that any curve, of genus at least two in an abelian variety, contains only finitely
many torsion points. (R.F. Coleman, “Torsion points on curves and p-adic abelian
integrals”, 1985)

- Rational Points on Curves. Coleman used the theory of p-adic abelian integrals to
show that it was possible to give effective bounds to the number of rational points
on an algebraic curve over a number field K , provided that the Mordell–Weil rank
of the Jacobian of the curve is not too large. (R.F. Coleman, “Effective Chabauty”,
1985)

1“In a subsequent paper we intend to show how the ideas in this paper lead to a theory of p-adic
abelian integrals” - R.F. Coleman [Col1].
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- p-adic Regulators, Polylogarithms and Multiples of Zeta Values. If C is a smooth
complete curve over Qalg

p whose Jacobian J has good reduction, Coleman and
de Shalit constructed a p-adic analogue of regulator pairing in the form of a
homomorphism

rp,C : K2

`

Qalg
p pCq

˘

ÝÑ Hom `H0
pC,Ω1

Cq,Qalg
p

˘

whose value at the Steinberg symbol tf, gu is the linear functional

rp,C ptf, guq pωq “
t
ÿ

i“1

ż Qi

Pi

Logpgq ¨ ω

where divpfq “ řt
i“1pQiq ´ pPiq and Log denotes a fixed branch of the p-adic

logarithm.
This can be used to compute special values of the p-adic L-function associated
to an elliptic curve over Q having good reduction at p. (R.F. Coleman and E.
de Shalit, “p-adic regulators on curves and special values of p-adic L-functions”,
1988)

- p-adic heights on Curves. Coleman and Gross proposed a new definition of a
p-adic height pairing on curves over number fields with good reduction at primes
above p (based on the work of Mazur, Tate and Schneider). The pairing was
defined as a sum of local terms; the ones corresponding to primes above p depend
on Coleman’s theory of p-adic integration. (R.F. Coleman and B.H. Gross, p-adic
heights on curves”, 1989)

- p-adic Periods It was Coleman (inspired by the work of Fontaine) who first pro-
posed to use p-adic integrals to define p-adic period on varieties having good
reduction at p. His ideas were eventually formalized by Colmez:
Theorem. The map pω, γq Ñ

ş

γ
ω of H1

dRpXqˆTppXq to B`dR is bilinear, commutes
with the action of Galois, respects filtrations and it is non degenerate when ex-
tending scalars to BdR.

(R.F. Coleman, “Hodge-Tate periods and p-adic abelian integrals”, 1984 - P.
Colmez, “Périodes p-adiques des variétés abéliennes”, 1992)

The great variety of potential applications of Coleman integrals has resulted, in the
2000’s, in the spread of a more concrete line of investigation.

A first explicit method for the computation of Coleman integrals on hyperelliptic
curves was described in the M.Sc. thesis of Igor Gutnik “Coleman Integration on hyper-
elliptic curves using Kedlaya algorithm” (Ben-Gurion University of the Negev, 2005).
Gutnik produced an implementation in MAGMA based on previous works of K.S. Ked-
laya on Frobenius computations. Unfortunately, his work was not tested, optimized,
distributed or used for any application.

Few years later Kedlaya proposed the numerical calculation of Coleman integrals
on hyperelliptic curves first at Banff (2/2007) and then at the Arizona Winter School
(3/2007). An implementation for the case g “ 1 was developed in SAGE mostly by R.
Bradshaw, using the implementation of the Frobenius calculations developed at MSRI
(6/2006) by himself, J. Balakrishnan, D. Harvey and L. Xiao.

This work was eventually extended to arbitrary g by K. Kedlaya, J. Balakrishnan
and R. Bradshaw.
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During the last ten years there have been several attempts to construct algorithms
for the applications we have illustrated before: p-adic heights have been studied by
Balakrishnan (“Local heights on hyperelliptic curves”), Besser (“On the computation
of p-adic height pairings on Jacobians of hyperelliptic curves”) and Harvey (“Efficient
computation of p-adic heights”). Besser and R. de Jeu (“An algorithm for computing p-
adic polylogarithms”) have done some computations for p-adic regulators; H. Furusho
have introduced some methods to study p-adic multiple zeta values (“p-adic multiple
zeta values. II. Tannakian interpretations”) and, finally, rational points on curves have
been studied among the others by W. McCallum - B. Poonen (“The method of Chabauty
and Coleman”) and M. Kim.

In conclusion, we would like to mention some more recent contributions: since Ked-
laya’s formulation of the algorithm, his work has been extended among the others by J.
Denef and F. Vercauteren (introducing the computations in characteristic 2), P. Gaudry
and N. Gürel (superelliptic curves), W. Castryck, T.G. Abbot, D. Roe and D. Harvey.

Structure of the Thesis
The aim of this Master thesis is to give an overview on the theory developed by Coleman
of p-adic abelian integrals, to discuss the computational methods introduced in recent
times by Kedlaya and Balakrishnan and to produce some concrete computations.

This presentation is articulated into 6 chapters.
Chapter 0 - We present some preliminary results about valued fields and normed space.

The purpose of this chapter is to highlight the setting in which we will be working
for the rest of the thesis.

Chapter 1 - This chapter deals with the construction of Tate that are the basis of rigid
geometry. In particular, we give the definition of affinoid algebras and affinoid
spaces carrying on a comparison with the objects of study in classical algebraic
geometry.

Chapter 2 - We use the dictionary developed in the previous chapter to construct gen-
eral rigid spaces. Firstly, we define a suitable topology on affinoid spaces and
we use it to glue them together; then, we show how rigid spaces and algebraic
varieties are related illustrating the techniques of analytification and reduction.
Finally, we glance at the construction of formal geometry.

Chapter 3 - The goal of this part is to describe the theory of p-adic abelian integrals
developed by Coleman in [Col3]. After a brief motivation, we describe the objects
coming into play and we prove the main Theorem of Coleman’s theory.

Chapter 4 - We discuss here the explicit algorithms for computing Coleman integrals
on hyperelliptic curves; we also present some concrete examples.

Chapter 5 - In this last chapter we give an example of application of Coleman integrals;
in particular, we describe the Chabauty-Coleman method for counting rational
points on curves.

VIII



CHAPTER 0 Valued Fields and Normed Spaces

In this first chapter we recall some basic definitions and results about valued fields
which will be useful for the study of rigid geometry. In particular, we introduce the
notion of non-archimedean valuation and we study the associated topology. In the
second section we deduce the behavior of this kind of valuations in fields extensions
and we give an overview on the problem of field completion. In the last part of the
chapter we introduce the idea of Banach spaces and Banach algebras which will be
used to study Tate’s algebras and Affinoid Algebras in the second chapter.

The main References are [Gou, Chapter 2], [BGR, §1.5], [Ser2, Chapter II] and [EP,
Chapter 3].

0.1 Non Archimedean Fields
Let K be a field.
Definition. An absolute value on K is a map | ¨ | : K Ñ R satisfying the following
conditions:
1. |x| ě 0, @x P K and |x| “ 0 if and only if x “ 0.
2. |x ¨ y| “ |x| ¨ |y| for all x, y P K .
3. |x` y| ď |x| ` |y| for all x, y P K .
We say that an absolute value on K is non-archimedean if it satisfies the additional
condition:
4. |x` y| ď maxt|x|, |y|u for all x, y P K .

It turns out that one can associate a valuation onK to any non-archimedean absolute
value. A valuation is a map ν : K Ñ RY t8u satisfying the following conditions:
1. νpxq “ 8 if and only if x “ 0.
2. νpx ¨ yq “ νpxq ` νpyq for all x, y P K .
3. νpx` yq ě mintνpxq, νpyqu for all x, y P K .
Indeed, we can set νpxq “ ´ log |x| and, in the other direction, |x| “ e´νpxq. This gives
a one-to-one correspondence between non-archimedean absolute values and valuations
and it allows us to talk indiscriminately about absolute values and valuations. A field
K with a valuation is called a valued field.

1



0. VALUED FIELDS AND NORMED SPACES §0.1. NON ARCHIMEDEAN FIELDS

Example. Fix a prime number p P Z. The p-adic valuation on Z is the map
νp : Zzt0u Ñ R

defined as follows: if n is an integer, νppnq is the unique positive integer such that n
can be written as

n “ pνppnqn1 with p - n1

We can extend νp to Q as follows: if x “ n
m
P Qˆ, then

νppxq “ νppnq ´ νppmq

with the convention that νpp0q “ 8.
For any x P Q we define the p-adic absolute value as

|x|p “ p´νppxq

with the convention that |0| “ 0.
It is easy to prove that the p-adic absolute value is non-archimedean.

Definition. Given an absolute value | ¨ | on a field K , we define the distance dpx, yq
between two elements x, y P K by

dpx, yq “ |x´ y|
The function dpx, yq is called a metric and it induces a topology on K .

Metrics arising from non-archimedean absolute values are called ultrametrics.
Lot of the properties of usual metric spaces do not remain true when we study non-

archimedean fields. In particular, the notion of open balls which is of great importance
in metric spaces turns out to be pretty strange in the ultrametric setting.
Definition. Let K be a field with an absolute value | ¨ |. Take an element a P K and a
positive real number r P R. The open ball centered at a with radius r is the set

Bpa, rq “ tx P K dpx, aq “ |x´ a| ă ru

Proposition 0.1.1. Let K be a field endowed with a non-archimedean absolute value.

(a) If b P Bpa, rq, then Bpa, rq “ Bpb, rq; in other words, every point that is contained
in an open ball is a center of that ball.

(b) If a, b P K and r, s P Rˆ` we have Bpa, rqXBpb, sq ‰ H if and only if Bpa, rq Ď Bpb, sq
or Bpa, rq Ě Bpb, sq; in other words, any two open balls are either disjoint or
contained in one another.

This situation is completely different from the one we are used to when we work
with metric spaces. The proposition is saying the following:

This can occur This can occur This cannot occur

Proposition 0.1.2. The topology of K induced by a non-archimedean absolute value is
totally disconnected, i.e., any subset in K consisting of more than just one point is not
connected.

2



0. VALUED FIELDS AND NORMED SPACES §0.2. COMPLETIONS

We want now to take a more algebraically flavored point of view.
Definition. Let K be a field with a non-archimedean absolute value | ¨ |. The value
group of K is the set of values assumed by | ¨ |:

|Kˆ
| “ t|a| a P Ku

The valuation ring of K is the set
OK “ ta P K |a| ď 1u

The maximal ideal of OK is
p “ ta P K |a| ă 1u

Finally, the residue field is
k “ OK{p

0.2 Completions
The problem giving rise to the theory of completions is that, in some cases, a field
K presents some “missing points”, i.e., it is possible to construct some convergent se-
quences whose limit is not in K .

In particular, there are special sequences, called Cauchy sequences, which somehow
“should have” a limit because their terms get crowded into balls with smaller and smaller
radius. The idea of completing a field consists in “filling the gaps” in such a way that
the sequences that should have a limit do have a limit.
Definition. Let K be a field with an absolute value | ¨ |. A sequence pxnqnPN of elements
xn P K is called a Cauchy sequence if the xn’s become arbitrarily close to each other
as n grows. More precisely pxnqn is a Cauchy sequence if for every ε ą 0 one can find
N such that |xn ´ xm| ă ε whenever n,m ě N .
Definition. A field K is said to be complete with respect to the absolute value | ¨ | if
every Cauchy sequence of elements of K has a limit in K .

One can refer to [Lan2, §IV.4] for a precise description on how to complete a given
metric space. The idea is to consider the set of all the Cauchy sequences in K with
an equivalence relation identifying two sequences which are “converging to the same
missing point” and to show that this set has the desired properties.

The standard example is the completion of Q. It is well known that the field of
rational numbers is not complete with respect to the standard absolute value | ¨ |8.
The completion of pQ, | ¨ |8q yields R, the field of real numbers, which turns out to be
complete with respect to the metric given by the extension of | ¨ |8 and to contain a copy
of Q which is dense.

On the other hand, we have seen that there is another absolute value on Q coming
from the p-adic valuation.
Lemma 0.2.1. A sequence pxnqnPN in a non-archimedean field K is a Cauchy sequence
if and only if |xn`1 ´ xn| tends to 0 as nÑ `8.

Lemma 0.2.2. The field Q of rational numbers is not complete with respect to the p-adic
absolute value.

The proofs of these two lemmas can be found in [Gou, Lemmas 3.2.2 and 3.2.3]. The
completion of Q with respect to the p-adic absolute value is called the field of p-adic
numbers and it is denoted by Qp.
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As we said, we can think of points of Qp as represented by Cauchy sequences of
rational numbers; we can introduce an absolute value on Qp, extending (the meaning of
this will be explained in the next section) the one on Q, in the following way: if λ P Qpand pxnqnPN is a Cauchy sequence representing λ, then

|λ|p “ lim
nÑ`8

|xn|p

The valuation ring of Qp is OQp , usually denoted by Zp; the maximal ideal of Zp is pZpand the residue field is Zp{pZp “ Fp, the field with p elements.

0.3 Extension of Valuation
From now on we will suppose that K is a non-archimedean field. Consider a field
extension K Ď L and suppose that | ¨ |K is a valuation on K while | ¨ |L is a valuation
on L. We say that | ¨ |L is an extension of | ¨ |K if |α|L “ |α|K for every α P K . The
problem of existence for extension of valuations is solved by the following result:
Theorem 0.3.1 (Chevalley). Consider a field K , a subring R Ď K and a prime ideal
p Ď R. There exists a valuation ring O of K such that R Ď O and m X R “ p where
m is the maximal ideal of O.

Corollary 0.3.2. Let L{K be a field extension and let O1 Ď K be a valuation ring.
There exists an extension O2 Ď L of O1.

In general, we are very far from having uniqueness of extension of valuation. The
situation becomes more pleasant when we consider algebraic or finite extensions.
Theorem 0.3.3. Let K be a valued field with valuation ν and L a finite extension of K .
Then ν has only finitely many inequivalent extensions ω1, . . . , ωt to L.

Finally, if K is complete and L{K is finite, then there is only one extension of the
valuation on K:
Theorem 0.3.4. Suppose that K is a field that is complete with respect to | ¨ | and
that L is a finite extension of K of degree n “ rL : Ks. Then there is precisely one
extension of | ¨ | to L, namely

|a| “ |NormL{Kpaq|
1{n

and L is complete with respect to this absolute value.

Notice that, if K is complete, then there exists a unique extension of the valuation
on K to Kalg, the algebraic closure of K . In general, Kalg is an infinite extension of K
and in this case Kalg is not complete. We will denote yKalg the completion of Kalg.
Remark. This is another important difference between the two different kind of absolute
values that we defined over Q. The completion with respect to |¨ |8 is R whose algebraic
closure C is finite dimensional over R and, in fact, the absolute value on R extends
uniquely to C.

On the other hand, if we complete Q with respect to the p-adic absolute value, we
obtain Qp whose algebraic closure is an infinite extension. Since Qp is complete, the
p-adic valuation extends uniquely to Qalg

p but this turns out to be not complete ([Gou,
Theorem 5.7.4]). We can construct the completion of Qalg

p playing again with Cauchy
sequences.
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Proposition 0.3.5. There exists a field Cp and an absolute value | ¨ | on Cp such that
Cp contains Qalg

p , and the restriction of | ¨ | to Qalg
p coincides with the p-adic absolute

value. Further, Cp is complete with respect to | ¨ | and Qalg
p is dense in Cp.

Cp has the desirable property of being algebraically closed (as well as complete) but
the price we have to pay is the loss of locally compactness and maximally completeness:
in Cp there is a decreasing set of closed disks Dn “ ta P K |a ´ cn| ď rnu having
the properties cn P K , rn P |Kˆ|, rn`1 ă rn and Dn Ą Dn`1 @n ě 1, has an empty
intersection, XDn “ H.

0.4 Banach Algebras
We denote by K a complete non-archimedean field.
Definition. A normed space over K is a vector space V over K with a map ‖ ‖ : V Ñ R
such that
1. ‖v‖ ě 0.
2. ‖v‖ “ 0 if and only if v “ 0.
3. ‖a ¨ v‖ “ |a| ¨ ‖v‖ for all a P K and for all v P V .
4. ‖v ` w‖ ď maxt‖v‖ , ‖w‖u for all v, w P V .
The map ‖ ‖ is called a norm. A seminorm is a map satisfying properties 1, 3 and 4
(possibly not 2).

As for field extensions, one verifies that if K is complete, then every finite dimen-
sional vector space over K possesses only one norm (up to equivalence) and it is a
Banach space with respect to it.
Remark. It is possible to prove that classical theorems on Banach spaces in functional
analysis over archimedean fields still hold in the non-archimedean case ([Tia, §1.2]).
Definition. A Banach algebra A over K is a commutative K-algebra having an identity
element and a norm ‖ ‖ such that:
1. A is a Banach space with respect to ‖ ‖.
2. ‖1‖ “ 1

3. ‖a ¨ b‖ ď ‖a‖ ¨ ‖b‖
Definition. A Banach Module M over a Banach algebra A is an A-module provided with
a norm ‖ ‖ such that M is a Banach space with respect to ‖ ‖ and ‖a ¨m‖ ď ‖a‖ ¨ ‖m‖
for every a P A and m PM .

Let A be a Banach K-algebra and E,F be two Banach A-module. Consider the
usual tensor product E bA F . For any x P E bA F , we can define

‖x‖ “ inf
x“

řr
i“1 eibfi

max
i
t‖ei‖ , ‖fi‖u

where x “
řr
i“1 ei b fi runs through all possible representations of x. This defines

a seminorm on the tensor product E bA F . We define the completed tensor product
EpbAF as the completion of E bA F . There are two natural maps ι1 : E Ñ EpbAFand ι2 : F Ñ EpbAF . The completed tensor product has following universal property:
if M is a Banach A-module and φ : E Ñ M and ψ : F Ñ M are two continuous
A-linear maps, then there exists a unique A-linear map φpbψ : EpbAF Ñ M such that
φ “ φpbψ ˝ ι1 and ψ “ φpbψ ˝ ι2.
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CHAPTER 1 Affinoid Algebras and Affinoid

Spaces

In classical algebraic geometry we construct affine varieties starting from polynomial
algebras over fields with archimedean absolute values. The idea is to consider the
prime spectrum of these algebras and to define a Zariski topology over it. An algebraic
variety is obtained by gluing together in a suitable way some affine varieties.

When considering a field K , complete with respect to a non-archimedean valuation,
we can still try to work with polynomial algebras but this approach has some inconve-
niences. In particular, it turns out that Krζ1, . . . , ζns is not complete with respect to the
Gauss norm. The completion of the space of polynomials is a Tate Algebra.

An affinoid algebra is the quotient of some Tate algebra and plays the role of a
finitely generated algebra in algebraic geometry. An affinoid space is the set of maximal
ideals of an affinoid algebra and it will be the analogue of an affine variety.

In this chapter we present the definition of Tate Algebras and we prove some basic
results about them. We will then explain why the canonical constructions coming from
algebraic geometry are not the suitable tools to approach the study of varieties over
non-archimedean fields and we will give the definitions of affinoid spaces and affinoid
subdomains. In the last section we will start constructing a topology on affinoid spaces
which will allow us to glue them together.

The references are [Bos, Chapters 2 and 3], [Tia, Chapter 1], [BGR, Chapter 5], [FvdP,
Chapter 3] and the original article by Tate [Tat].

1.1 Tate Algebras
Before starting, let us fix the notation. K will denote a complete field with respect to
a non-archimedean valuation. The valuation ring of K will be written as OK “ ta P
K |a| ď 1u. The maximal ideal of the valuation ring is p “ ta P K |a| ă 1u and the
residue field OK{p of K is denoted by k.

According to the philosophy of Algebraic geometry, the study of an affine variety is
equivalent to the study of its ring of algebraic functions ([Har]). One might try to figure
out what could be a good notion of analytic functions over a non-archimedean field.

Tate’s idea is to mimic the Weierstrass’ definition of holomorphic functions.
Lemma 1.1.1. A formal power series

f “
ÿ

νPNn
cνζ

ν
“

ÿ

pν1,...,νnqPNn
cν1,...,νnζ

ν1
1 ¨ . . . ¨ ζνnn P KJζ1, . . . , ζnK

converges in tpa1, . . . , anq P
`

Kalg˘n |ai| ď 1u if and only if lim|ν|Ñ8 |cν | “ 0 (where
|ν| “

ř

νi).
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I. AFFINOID ALGEBRAS AND AFFINOID SPACES §1.1. TATE ALGEBRAS

In the following, we will use the notation
BnpKq “ tpa1, . . . , anq P K

n
|ai| ď 1u

Definition. The Tate algebra (or standard affinoid algebra) over K is the set of all formal
power series ř

νPNn cνζ
ν P KJζ1, . . . , ζnK such that lim|ν|Ñ8 |cν | “ 0. It is denoted by

Tn “ Kxζ1, . . . , ζny “

#

ÿ

νPNn
cνζ

ν
P KJζ1, . . . , ζnK lim

|ν|Ñ8
|cν | “ 0

+

Hence, the Tate algebra is the subring of KJζ1, . . . , ζnK consisting of formal power series
with coefficients in K that converge in BnpKalgq.

This algebra can be endowed with a norm, called the Gauss Norm, defined by∥∥∥∥∥ ÿ

νPNn
cνζ

ν

∥∥∥∥∥ “ max
ν
|cν |

The Gauss norm has the following properties:
• ‖f‖ “ 0 ðñ f “ 0.
• ‖cf‖ “ |c| ‖f‖ for all c P K and f P Tn.
• ‖fg‖ “ ‖f‖ ‖g‖ for all f, g P Tn.
• ‖f ` g‖ ď maxt‖f‖ , ‖g‖u for all f, g P Tn.

It follows from the third property that Tn is an integral domain.
The Gauss Norm gives to Tn the structure of K-Banach algebra:

Proposition 1.1.2. Tn is complete with respect to the Gauss norm.

Sketch of Proof. Suppose we have a Cauchy sequence pfiqiPN in Tn. We take
fi “

ÿ

ν

cpiqν ζ
ν

Then, for each fixed ν P Nn, the sequence pcpiqν qiPN is a Cauchy sequence. We set cν to
be its limit; it can be proved that f “ ř

ν cνζ
ν is the limit of pfiqiPN and it lives in Tn.

For more details we can refer to [Bos, Proposition 2.2.3]
Proposition 1.1.3 (Maximum Modulus Principle). Let f P Tn. Then |fpxq| ď ‖f‖ for
all points x P BnpKalgq, and there exists a point x P BnpKalgq such that the equality
|fpxq| “ ‖f‖ holds.

The Tate algebra has lot of properties in common with the usual polynomial ring in
n variables over K . The key result for proving it is the Weierstrass Preparation and
Division Theorem. Before stating it, we need to introduce some notation. Let f P Tn be
of the form ř8

ν“0 gνζ
ν
n with gν P Tn´1. f is called ζn-distinguished of order s P N if gsis a unit in Tn´1 and ‖gs‖ “ ‖g‖ and ‖gs‖ ą ‖gν‖ for ν ą s. If, in addition, f has norm

1, then we say that f is regular of order s. Notice that in case f is regular, the two
conditions above are equivalent to require that the reduction of f in T n “ krζ1, . . . , ζns

([BGR, Proposition 5.1.2.2]) is of the form f “ gsζ
s
n ` gs´1ζ

s´1
n ` . . .` g0 with gs P kˆ.
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I. AFFINOID ALGEBRAS AND AFFINOID SPACES §1.1. TATE ALGEBRAS

Theorem 1.1.4 (Weierstrass Division). Let g P Tn be ζn-distinguished of degree s. Then,
for each f P Tn there exist uniquely determined elements q P Tn and r P Tn´1rζns with
deg r ă s such that f can be written as f “ qg ` r. Further, ‖f‖ “ maxt‖q‖ ‖g‖ , ‖r‖u
Proof. Without loss of generality we may assume ‖g‖ “ 1.
(Uniqueness) Suppose we have two different decompositions of the same f :

gq ` r “ f “ gq1 ` r1 ùñ pq ´ q1qg “ r1 ´ r
‖g‖“1

ùùùùùùñ ‖q ´ q1‖ “ ‖r1 ´ r‖
Take some c P K with |c| “ ‖q ´ q1‖´1. Then cpq ´ q1qg “ cpr1 ´ rq and so the
same is true with overbars everywhere; but this contradicts the uniqueness in the
ordinary division algorithm for polynomials.

(Estimate) If f “ qg ` r, then clearly ‖f‖ ď maxt‖qg‖ , ‖r‖u. Suppose that ‖f‖ ň
maxt‖qg‖ , ‖r‖u, then we may assume maxt‖qg‖ , ‖r‖u “ 1. Thus ‖f‖ ň 1 which
means that 0 “ qg ` r and q ‰ 0, r ‰ 0 but this contradicts the Euclid’s division
in Krζ1, . . . , ζn´1srζns.

(Existence) Define
B “ tqg ` r r P Tn´1rζns, deg r ă s, q P Tnu

It can be deduced that B is a closed subgroup of Tn. Let’s write g in the form
g “

ř8

ν“0 gνpζ1, . . . , ζn´1qζ
ν
n ; we define ε “ maxνąst|gν |u, where ε ă 1. Further,

we set Kε “ tx P K |x| ď εu and kε “ OK{Kε. Then, there is a natural ring
epimorphism σε : Tn Ñ kεrζ1, . . . , ζns with kerσε “ tf P Tn ‖f‖ ď εu, and σεpgqis a unitary polynomial in ζn of degree s. Therefore, Euclid’s division with respect
to σεpgq is possible in the ring kεrζ1, . . . , ζn´1srζns and so, for all f P Tn, we can
find q P Tn and r P Tn´1rζns with deg r ă s such that σεpfq “ σεpgqσεpqq ` σεprq.Hence, for all f P Tn, there is an element b P B such that |f´b| ă ε|f |. Therefore,
B is dense in Tn and, since B is closed in Tn, we get B “ Tn. Hence, every f P Tnadmits the desired decomposition.

Theorem 1.1.5 (Weierstrass Preparation). Let g P Tn be ζn-distinguished of degree s.
Then there are a unique monic polynomial w P Tn´1rζns of degree s and a unique unit
e P Tn such that g “ e ¨ w. Further, ‖w‖ “ 1 so that w is distinguished of degree s.
Proof. (Existence) We start by applying the Weierstrass Division Theorem 1.1.4 to the

monomial ζsn; we get
ζsn “ qg ` r

with q P Tn and r P Tn´1rζns of degree < s. Now ω “ qg “ ζsn ´ r is ζn-
distinguished of degree s. Assuming ‖g‖ “ ‖q‖ “ 1, we can look at the reduction
qg “ ω. Since both ω and g are polynomials of degree s in ζn, it follows that q is
a unit in kˆ (ω is monic).

(Uniqueness) If g “ eω and r “ ζsn ´ ω as before, then ζsn “ e´1g ` r which, by
the uniqueness of Weierstrass Division, shows the uniqueness of e´1 and r and,
therefore, of e and ω.

Theorem 1.1.6 (Weierstrass Distinction). If f1, . . . , fm P Tn all have norm 1, then there
exists an automorphism σ of Tn (preserving the Gauss norms) such that fσ1 , . . . , fσm are
ζn-distinguished.

The proof of this can be found in [Bos, Lemma 2.2.7].
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The Weierstrass Preparation and Division Theorems immediately yield a lot of prop-
erties of Tate Algebras.
Proposition 1.1.7. The Tate Algebra Tn is Nöetherian.

Proof. We will work by induction on n. We consider a non trivial ideal I of Tn. Choose
a non zero element f P I. We use Weierstrass Distinction Theorem 1.1.6 and we select
an automorphism σ of Tn such that fσ is ζn-distinguished of degree s. Now we apply
Weierstrass Division Theorem 1.1.4 and we obtain that Iσ is generated by fσ and
Iσ X Tn´1rζns. By the induction hypothesis, Tn´1 is Nöetherian, and so is Tn´1rζns by
the usual Hilbert basis theorem. Thus, Iσ is finitely generated, and then so is I.
Proposition 1.1.8. The Tate Algebra Tn is a U.F.D.

Proof. Also in this situation we proceed by induction; we may assume that Tn´1 is a
unique factorization domain. It follows that Tn´1rζns is a U.F.D. by a result of Gauss. We
consider a non-zero element f P Tn that is not a unit. Applying Weierstrass Distinction
Theorem 1.1.6 (where necessary), we may assume that f is ζn-distinguished. Modulo
the use of Weierstrass Division Theorem 1.1.4, we can take f to be in Tn´1rζns; thus f
has a factorization. Now consider a factorization f “ ω1 ¨ . . . ¨ ωt into prime elements
ωi P Tn´1rζns. Since f is a monic polynomial in ζn, we can assume the same for
ω1, . . . , ωt. Then, as ‖ωi‖ ě 1, we must have ‖ωi‖ “ 1 for all i, since ‖f‖ “ 1. It
remains to show that the ωi are prime in Tn (they are prime in Tn´1rζnsq. Now it
suffices to observe that there is an isomorphism

Tn´1rζns{pωq » Tn{pωq

and both sides are free Tn´1 modules. It follows that Tn is a U.F.D.
Corollary 1.1.9. The Tate Algebra Tn is normal.

For details in the proof one can refer to [Bos, Proposition 2.2.15].
Proposition 1.1.10. The Krull dimension of the Tate Algebra Tn is n.

Proof. Clearly the Krull dimension is at least n since we have the sequence of ideals
pζ1q Ă pζ1, ζ2q Ă . . . Ă pζ1, ζ2, . . . , ζnq

To prove the inverse inequality we can observe that, by Weierstrass Distinction and
Preparation Theorems (1.1.6 and 1.1.5), for any irreducible f P Tn, Tn{pfq is finite over
Tn´1 and so it has Krull dimension n ´ 1. But then, since finite ring extensions of
Nöetherian rings do not increase Krull dimensions, Tn has dimension at most n.
Proposition 1.1.11. Let ‖ ‖ be a norm on the Tate algebra Tn making Tn into a Banach
algebra. Then every ideal I of Tn is closed with respect to ‖ ‖.

This is a particular application of a more general Lemma: [FvdP, Lemma 1.2.3].
Proof. Choose generators g1, . . . , gr of I such that ‖gi‖ “ 1 for all i and every f P I,
f “

řr
i“1 figi for some fi P Tn with ‖fi‖ ď ‖f‖ (We can always do this choice -

[Bos, Corollary 2.2.7]). Iff “ ř8

ν“0 fν , fν P I is convergent in Tn, there are equations
fν “

řr
i“1 fν,igi, fν,i P Tn. But then f “

řr
i“1

`
ř8

ν“0 fνi
˘

gi belongs to I and we are
done.
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1.2 Affinoid Algebras
In this section we introduce a generalization of Tate algebras: affinoid algebras. Affi-
noids algebras play a parallel role to the one of finitely generated algebras in al-
gebraic geometry. Hence, as we do over archimedean fields, we start by proving a
non-archimedean version of the Nöether Normalization Theorem.
Definition. A K-algebra A is called an affinoid K-algebra if there is an epimorphism
of K-algebras Tn Ñ A for some n P N.
Theorem 1.2.1 (Nöether Normalization). Let I be an ideal of Tn, and let A “ Tn{I be
the corresponding affinoid algebra. Then there exists a finite injective map Td ãÑ A for
some d; moreover, A is Nöetherian and its Krull dimension is d.

Proof. We will proceed by induction on n. After applying Weierstrass Preparation and
Division Theorems, we may assume that I contains a monic polynomial f P Tn´1rζns.Then Tn{pfq is free over Tn´1 with basis ζn, . . . , ζd´1

n ; now we can set J “ I X Tn´1.Now we have an injective and finite map Tn´1{JÑ Tn{I. By induction, we have a finite
injective K-algebra homomorphism Td Ñ Tn´1{J which gives a finite and injective map

Td ÝÑ Tn´1{J ÝÑ Tn{I

To prove the statement about the Krull dimension, we only need to recall that for a
finite injective homomorphism AÑ B of Nöetherian rings, the rings A and B have the
same Krull dimension. The statement now follows from Proposition 1.1.10.

Finally, the proof that A is Nöetherian is the same given for the Tate Algebra Tn in
Proposition 1.1.7.
Corollary 1.2.2. For any maximal ideal m of A, the field A{m is a finite extension of K .

Proof. It follows directly from Nöether Normalization Theorem: If m is a maximal ideal,
then A{m is a field. We know the existence of a finite injective map

Td ãÑ A{m

but, since the Krull dimension of A{m is zero, then we must have d “ 0. Hence, we
have a finite injective homomorphism K Ñ A{m.
Proposition 1.2.3. An affinoid K-algebra A is Jacobson (i.e., every prime ideal is the
intersection of maximal ideals).

Let A be a K-affinoid algebra. We want to introduce an intrinsic semi-norm on A.
Let I be a maximal ideal in A. Then A{I is a finite extension of K by what we have
just proved. This means, thanks to the discussion in Section 0.3, that it carries a unique
extension of the valuation on K: we will denote it by | ¨ |. Further, we denote by fpIq
the image of f P A in A{I.
Definition. The spectral semi-norm on A is defined by:

‖f‖sp “ sup
mPMaxpAq

|fpmq|

This is, in fact, a semi-norm (we will see that in some cases it will be a norm).
We present now a list of properties of the spectral semi-norm. For more details one

can see [FvdP, §3.4], [BGR, §6.2] or [Bos, §3.1]
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Lemma 1.2.4. The spectral norm satisfies ‖fn‖sp “ ‖f‖nsp for any element f of an
affinoid K-algebra.

Lemma 1.2.5. Let φ : A Ñ B be a morphism of affinoid K-algebras. Then ‖φpfq‖sp ď

‖f‖sp for all f P A.

Proposition 1.2.6. On a Tate algebra Tn, the spectral (or supremum) norm coincides
with the Gauss norm.

Proof. Using the Maximum Modulus Principle (Proposition 1.1.3) we see that
‖f‖sp “ sup

xPBnpKalgq
t|fpxq|u @f P Tn

It can be proved [Bos, Corollary 2.2.13] that we can construct a surjective map
BnpKalg

q ÝÑ MaxpTnq
x ÝÑ mx “ tf P Tn fpxq “ 0u

Thus, we get an embedding Tn{x ãÑ Kalg and we see that
fpmxq “ fpxq ùñ |fpmxq| “ |fpxq|

Now the result follows from the surjectivity of the map defined above.
Proposition 1.2.7. Let Td ãÑ A be a finite monomorphism into some K-algebra A. Let
f P A and assume that A, as a Td-module, has no zero divisors.

(i) There is a unique monic polynomial Pf “ ζr ` ar´1ζ
r´1 ` . . . ` a1ζ ` a0 P Tdrζs of

minimal degree such that Pf pfq “ 0 (Minimal Polynomial).

(iii) The supremum norm of f is given by

‖f‖sp “ max
i“1,...,r

‖ai‖1{i

Sketch of Proof. Take f P A. f satisfies a minimal polynomial P with coefficients in
the field of fractions of Tn. Since Td is a U.F.D. (Proposition 1.1.8), then it is integrally
closed and therefore P has coefficients in Td. Now, for any m P MaxpTnq and any root
λ of ζr ` ar´1pmqζ

n´1 ` . . . ` a0pmq there is x P MaxpAq such that x X Tn “ m and
fpxq “ λ. Hence

‖f‖sp “ maxtmax
i
|aipmq| m P MaxpTnqu “ max

i
‖ai‖1{i

Theorem 1.2.8 (Maximum Principle). For any affinoid K-algebra A and any f P A,
there exists a point m P MaxpAq such that ‖f‖sp “ |fpmq|.

A proof of this can be found in [Bos, Theorem 3.1.15] or [FvdP, Proposition 3.4.3].
Corollary 1.2.9. Let A be an affinoid algebra. The intersection of all maximal ideals
of A is the ideal of nilpotent elements of A. In particular, if A is a reduced affinoid
algebra, the spectral semi-norm on A is a norm.

Theorem 1.2.10. Let A be a reduced affinoid algebra. The spectral norm is equivalent
to any other norm which makes A into a Banach algebra.

For a proof of this see [FvdP, Theorem 3.4.9].
11



I. AFFINOID ALGEBRAS AND AFFINOID SPACES §1.3. AFFINOID SPACES

1.3 Affinoid Spaces
Let us consider now an affinoid K-algebra A. We have seen that if we have an element
f P A and a maximal ideal x of A, then we have an embedding A{x ãÑ Kalg yielding a
good definition of valuation of fpxq (the image of f in A{x). Thus, we can think of A
as the set of functions on its maximal spectrum Max(A).

We will denote by Sp pAq the maximal spectrum MaxpAq “ tm Ď A m maximal idealu
together with its K-algebra of functions A. It is clear that we are somehow mimicking
the constructions of algebraic geometry where we have affine varieties with their rings
of regular functions.

Considering this parallelism with algebraic geometry, one might ask why we are
restricting ourselves to consider only maximal ideals instead of extending the study to
the whole spectrum SpecpAq. There are several reasons to do that. Let us give a look
at some of them:

• First of all, as noticed in [Bos], for a prime ideal q of an affinoid K-algebra A, the
the field of fractions of A{q, will, in general, be of infinite degree over K . Hence,
Kq cannot be viewed as an affinoid K-algebra (since, otherwise, Kq would be
finite over K).

• Secondly, we have seen that there is a natural norm on affinoid K-algebras. This
is defined valuating f P A over maximal ideals and considering the absolute value
of these objects. This valuation is well defined once that we know how to embed
A{ideal ãÑ Kalg and this is possible for maximal ideals and not, in general, for
prime ideals.

• Further, since an affinoid K-algebra is Jacobson, this implies that, if we have an
element f P A that vanishes on all the maximal ideals, this must be nilpotent.
We can observe that we do not have any need of considering prime ideals. (To be
honest, this is also the case of finitely generated algebras over fields or algebraic
varieties and in fact it is possible to study algebraic varieties considering their
maximal spectrum).

• Finally, it is possible to prove that any homomorphism of K-affinoid algebras
induces a map between their maximal spectra (in the reverse order - in the sense
that this functor is contravariant) by sending a maximal ideal to its contraction.
This is a similar situation to algebraic geometry where φ : A Ñ B induces
f : SpecpBq Ñ SpecpAq sending B Ě qÑ φ´1pqq.

Definition. Let A be an affinoid K-algebra. We associate to A the set
X “ Sp pAq “ MaxpAq

of its maximal ideals. We call X an affinoid space.
In principle, we could define a Zariski topology on X and study the properties of the
resulting topological space.
Definition. We define the Zariski topology on Sp pAq such that the closed subsets of
Sp pAq are of the form

V paq “ tx P Sp pAq fpxq “ 0 @f P au for any ideal a of A
Alternatively, we can see V paq as:

V paq “ tx P Sp pAq a Ă mxu

where mx is the maximal ideal of A corresponding to x P Sp pAq.

12
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Example. Let K be an algebraically closed field and consider an affinoid K-algebra
A. If φ : A Ñ K is a homomorphism of K-algebras, then kerpφq is a maximal ideal
and φpfq “ fpxq. Thus, Sp pAq can be viewed as the set of K algebra homomorphisms
AÑ K .

In particular, for the free Tate Algebra Tn, we can identify
Sp pTnq “ BnpKq “ tpx1, . . . , xnq P K

n
|xi| ď 1u

Thus, Tn can be regarded as the space of “functions” over the set of its maximal ideals.
Example. The affinoid space associated to an affinoid algebra A “ Tn{I can be seen as

Sp pAq “ V pIq “ tx P BnpKq fpxq “ 0 for all f P Iu
One can think of A as the set of “functions” on Sp pAq.

It is easy to prove that the topology just defined satisfies similar properties to the
Zariski topology defined for affine schemes:
Lemma 1.3.1. Let A be an affinoid K-algebra and a, b, paiqiPI be ideals of A. Then,

(i) If a Ď b, then V pbq Ď V paq.

(ii)
Ş

iPI V paiq “ V p
ř

iPI aiq.

(iii) V paq Y V pbq “ V pabq.

(iv) The sets
Dpfq “ tx P Sp pAq fpxq ‰ 0u

form a basis for the Zariski topology on Sp pAq.

The proof is straightforward and very similar to the one given for classical affine
spaces.

As usual, for U Ă Sp pAq, one can define the sets
IpUq “ tf P A fpuq “ 0 for all y P Y u

This yields the Hilbert Nullstellensatz Theorem:
Theorem 1.3.2 (Hilbert Nullstellensatz). Let A be an affinoid K-algebra and a Ď A an
ideal. Then IpV paqq “

?
a

Corollary 1.3.3. The maps V p¨q and Ip¨q induce a bijection between the set of reduced
ideals in A and the set of Zariski-closed subsets of Sp pAq.

A complete discussion about Zariski topology on affinoid spaces can be found in
[Tia, §1.5].
Remark. As pointed out in the introduction to this section, a morphism

φ : Sp pAq Ñ Sp pBq
of affinoid K-spaces can be induced by a morphism φ˚ : B Ñ A of affinoid K-algebras
by:

φpmq “
`

φ˚
˘´1

pmq

Note that φpmq is maximal since we have a chain of injections
K ãÑ B{

`

φ˚
˘´1

pmq ãÑ A{m

and A{m is a field which is finite over K .
13
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We want to conclude this section with a brief remark about fiber products of affinoid
K-spaces ([BGR, Proposition 7.1.4/4]).
Proposition 1.3.4. In the category of K-affinoid spaces the fiber product of two spaces
Sp pB1q and Sp pB2q over a space Sp pAq can be constructed in this way:

Sp
`

B1pbB2

˘

“Sp pB1q ˆSppAq Sp pB2q Sp pB1q

Sp pB2q Sp pAq

1.4 Affinoid Subdomains
We have observed that A can be regarded as a space of functions over Sp pAq. In
general, it would be nice to extend this notion of “analytic functions” to (open) subsets
of Sp pAq. For this purpose, the Zariski topology turns out to be too rough since it does
not take into account the non-archimedean nature of A. Therefore, we have to provide
Sp pAq with an extra topological structure. This was first done by Tate in [Tat] and then
simplified by Gerritzen and Grauert with the introduction of Rational subsets.

Let A be an affinoid K-algebra and X “ Sp pAq. For f P A and ε P Rą0 we define
the set

Xpf, εq “ tx P X |fpxq| ď εu

Definition. The canonical (Tate) topology on Sp pAq is the topology generated by sets
of the form Xpf, εq. In particular, a subset U Ď X is open if and only if it is the union
of sets of the form Xpf1, ε1q X . . .XXpfr, εrq.

For simplicity we will write
Xpfq “ Xpf, 1q and Xpf1, . . . , frq “ Xpfrq X . . .XXpfrq

Lemma 1.4.1. For any affinoid K-space X “ Sp pAq, the canonical topology is gener-
ated by all subsets Xpfq with f varying in A, i.e., a subset U Ď Sp pAq is open if and
only if it is a union of sets of type Xpf1, . . . , frq “ Xpfq.

Proof. Since |fpxq| P | `Kalg˘ˆ |, we can write
Xpf, εq “

ď

ε1ďε

ε1P|pKalgqˆ|

Xpf, ε1q

Because of Theorem 0.3.4, for all ε1 P | `Kalg˘ˆ | we can find c P |Kˆ| such that |c| “ ε1s.
Thus,

Xpf, ε1q “ Xpf s, ε1sq “ Xpc´1f sq

We state now a technical Lemma which will help us in determining the openness of
subsets. The proof can be found in [Bos, Lemma 3.3.3].
Lemma 1.4.2. For an affinoid K-space X “ Sp pAq, consider an element f P A and
a point x P Sp pAq such that ε “ |fpxq|. Then, there is an element g P A satisfying
gpxq “ 0 such that |fpyq| “ ε for all y P Xpgq. In other words, Xpgq is an open
neighborhood of x contained in ty P X |fpyq| “ εu.

14
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Corollary 1.4.3. The following sets are open with respect to the canonical topology:
tx P Sp pAq fpxq ‰ 0u

tx P Sp pAq fpxq ď εu

tx P Sp pAq fpxq “ εu

tx P Sp pAq fpxq ě εu

Lemma 1.4.4. Let φ˚ : A Ñ B be a morphism of affinoid K-algebras. We consider
the associated morphism φ : Y “ Sp pBq Ñ Sp pAq “ X . Then, for every choice
f1, . . . , fr P A, we have

φ´1
pXpf1, . . . , frqq “ Y pφ˚pf1q, . . . , φ

˚
pfrqq

In particular, φ is continuous with respect to the canonical topology.
Proof. For each y P Y the map φ˚ : B Ñ A gives rise to a commutative diagram

B A

B{mφpyq A{my

φ

which implies the result.
Definition. Let X be an affinoid K-space. A subset in X of the form

Xpf1, . . . , frq “ tx P X |fipxq| ď 1u

is called a Weierstrass domain in X .
Definition. Let X be an affinoid K-space. A subset in X of the form

Xpf1, . . . , fr, g
´1
1 , . . . , g´1

s q “ tx P X |fipxq| ď 1, |gjpxq| ě 1u

is called a Laurent domain in X .
Definition. Let X be an affinoid K-space. A subset in X of the form

X

ˆ

f1

f0

, . . . ,
fr
f0

˙

“ tx P X | |fipxq| ď |f0pxq|u

for functions f0, . . . , fr P A without common zeros, is called a Rational domain in X .
Lemma 1.4.5. Weierstrass, Laurent and Rational domains are open in X “ Sp pAq with
respect to the canonical topology. Further, the Weierstrass domains form a basis of this
topology.

This is a straightforward application of Lemma 1.4.2.
Definition. Let X “ Sp pAq be an affinoid K-space. A subset U Ď X is called an
affinoid subdomain of X if there exists a morphism of affinoid K-spaces

ι : X 1
“ Sp pA1q Ñ Sp pAq “ X

such that ιpX 1q Ď U and the following universal property holds: for any morphism
of affinoid K-spaces γ : Y Ñ X with γpY q Ď U , there exists a unique morphism
γ1 : Y Ñ X 1 such that γ “ ι ˝ γ1.

Y “ Sp pBq

X 1 “ Sp pA1q U ĎX “ Sp pAq
D!γ1

ι

γ

15
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Example (Weierstrass domains are affinoid subdomains). Let us consider a Weierstrass
domain

Xpf1, . . . , frq “ tx P X |fipxq| ď 1, i “ 1, . . . , ru

There is a natural morphism of affinoid K-algebras:
ι˚ : A ÝÑ Axf1, . . . , fry “

Axζ1, . . . , ζry

pζi ´ fiqi“1,...,r

and associated to it a morphism of affinoid K-spaces:
ι : Sp pAxf1, . . . , fryq ÝÑ Sp pAq “ X

We want to show that it satisfies the universal property; let φ : Sp pBq “ Y Ñ X “

Sp pAq be a morphism of affinoid K-spaces such that φpY q Ď Xpf1, . . . , frq. There is a
morphism φ˚ : AÑ B corresponding to φ. Now

φpY q Ď Xpf1, . . . , frq ðñ
∥∥φ˚pfiq∥∥ ď 1 @i

Indeed, from the inclusion A{mφpyq ãÑ B{my of finite extensions of K we obtain the
equality |φ˚pfiqpyq| “ |fipφpyqq| for each i.

Thus, there exists a morphism ψ˚ : Axζ1, . . . , ζny Ñ B such that ψ˚|A “ φ˚ and
ψ˚pζiq “ φ˚pfiq, i.e, the morphism ψ˚ factors through Axζ1, . . . , ζry{pζi ´ fiqi“1,...,r.
Example (Laurent domains are affinoid subdomains). Let us consider a Laurent domain

Xpf1, . . . , fr, g
´1
1 , . . . , g´1

s q “ tx P X |fipxq| ď 1, , |gipxq| ě 1 i “ 1, . . . , ru

There is a natural morphism of affinoid K-algebras:
ι˚ : A ÝÑ Axf1, . . . , fr, g

´1
1 , . . . , g´1

s y “
Axζ1, . . . , ζr, ξ1, . . . , ξsy

pζi ´ fi, 1´ gjξjqi“1,...,r
j“1,...,s

and associated to it a morphism of affinoid K-spaces:
ι : Sp `Axf1, . . . , fr, g

´1
1 , . . . , g´1

s y
˘

ÝÑ Sp pAq “ X

Now, proving that this satisfies the universal property is similar to the previous example.
Example (Rational domains are affinoid subdomains). A rational domain is a set of the
form

X

ˆ

f1

f0

, . . . ,
fr
f0

˙

“ tx P X | |fipxq| ď |f0pxq|u

First of all we observe that f0 cannot have zeros in X
´

f1
f0
, . . . , fr

f0

¯

: if x0 was such a
zero we would have |fipx0q| ď |f0px0q| “ 0 and this contradicts the hypothesis that
f0, . . . , fr have no common zeros. We observe that there is a morphism of K-affinoid
algebras

ι˚ : A ÝÑ Ax
f1

f0

, . . . ,
fr
f0

y “
Axζ1, . . . , ζry

pfi ´ f0ζiqi“1,...,r

which gives a morphism of K-affinoid spaces ι : Sp
´

Axf1
f0
, . . . , fr

f0
y

¯

Ñ Sp pAq “ X and
again this satisfies the universal property.

We present now a series of results about affinoid subdomains without proof. A
complete description can be found in [BGR, §7.2] and [Bos, §3.3].

16
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Lemma 1.4.6. Let U be a subset of Sp pAq and let ι : X 1 “ Sp pA1q Ñ Sp pAq “ X be
a K-affinoid map. Then

(1) ι is injective and it satisfies ιpSp pA1qq “ U . Thus, it induces a bijection of sets
X 1 „
ÝÝÑ U .

(2) For x P Sp pA1q and n P N, the map ι˚ : AÑ A1 induces an isomorphism of affinoid
K-algebras A{mn

ιpxq » A1{mn
x .

(3) For x P Sp pA1q, we have mx “ ι˚pmιpxqqA
1.

Proposition 1.4.7. [Transitivity of Affinoid Subdomains] For an affinoid K-space X ,
consider an affinoid subdomain U Ď X , and an affinoid subdomain V Ď U . Then V is
an affinoid subdomain in X as well.

Proposition 1.4.8. Let φ : Y Ñ X be a morphism of affinoid K-spaces and let X 1 ãÑ X
be an affinoid subdomain. Then Y 1 “ φ´1pX 1q is an affinoid subdomain of Y , and there
is a unique morphism of affinoid K-spaces φ1 : Y 1 Ñ X 1 such that the diagram

Y 1 X 1

Y X

is commutative. In fact, the diagram is Cartesian in the sense that it characterizes Y 1 as
the fiber product X 1ˆX Y . Further If X 1 is Weierstrass (respectively Laurent, Rational)
domain in X , the corresponding fact is true for Y 1 as an affinoid subdomain of Y .

Proposition 1.4.9. Let X be an affinoid K-space and let U ,V Ă X be affinoid sub-
domains. Then U X V is an affinoid subdomain of X . If U and V are Weierstrass,
respectively Laurent or rational domains, the same is true for U X V .

Lemma 1.4.10. Let U ãÑ X be a morphism of affinoid K-spaces defining U as an
affinoid subdomain of X . Then U is open in X , and the canonical topology of U equals
the canonical topology of X restricted to U .

Theorem 1.4.11 (Gerritzen-Grauert). Let X be an affinoid K-space and U ãÑ X an
affinoid subdomain. Then U is a finite union of rational subdomains of X .

Note that, in general, the converse is not true: a counterexample can be found in
[FvdP, Remarks 4.1.5(7)].
Remark. In general, points txu Ď X are not affinoid subdomains. Indeed, one can
consider the map txu ãÑ X which gives rise to the K-algebras homomorphism

A ÝÑ A{mx mx is the ideal corresponding to x
The problem is that this homomorphism fails to satisfy the universal property. For
instance we can construct γ : AÑ A{m2

x and this does not factor through AÑ A{mx

17
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1.5 Affinoid Functions
Now that we have defined a topology on an affinoid K-space X “ Sp pAq, we would
like to construct a sheaf on it. The idea is again to mimic algebraic geometry and to
define a sheaf of functions.

For any affinoid subdomain U Ď X we denote OXpUq the corresponding K-affinoid
algebra. Given V an affinoid subdomain of U we know from Proposition 1.4.7 that V is
an affinoid subdomain of X and we have a canonical morphism of affinoid K-algebras
given by the universal property:

OXpUq ÝÑ OXpVq
Remark. This map can be regarded as a sort of restriction map of affinoid functions on
U to affinoid functions on V .

What we obtain is a presheaf of affinoid K-algebras on the category of affinoid
subdomains of X .
Definition. The presheaf OX is called the presheaf of affinoid functions on X .
Definition. For every point x P X , the ring

OX,x “ lim
ÝÑ

UQx

OXpUq

where the limit runs over all the affinoid subdomains containing x, is called the stalk
of OX at x. Every element fx P OX,x is called germ of f P OXpUq at x.
Proposition 1.5.1. Let x P X “ Sp pAq be a point corresponding to the maximal ideal
mx of A “ OXpXq. Then OX,x is a local ring with maximal ideal

mxOX,x “ tfx P OX,x fxpxq “ 0u

Proof. Let U Ď X be an affinoid subdomain. From Lemma 1.4.6 we get an isomor-
phism OXpXq{mxOXpXq » OXpUq{mxOXpUq. Since the direct limit preserves exact
sequences, we obtain another isomorphism

OXpXq

mxOXpXq
»

OX,x

mxOX,x

which shows that mxOX,x is a maximal ideal since OXpXq{mxOXpXq is a field.
Now to see the uniqueness of the maximal ideal, we consider fx P OX,xzmxOX,x.This germ is represented by f P OXpUq for some affinoid subdomain x P U Ď X . Hence,

fpxq ‰ 0 and, up to multiplication by a scalar, we may assume |fpxq| ě 1. But then
Upf´1q is a Laurent affinoid subdomain of X containing x and the restriction of f to
Upf´1q is a unit in OXpUpf´1qq. Thus, fx is a unit in OX,x and mxOX,x is the unique
maximal ideal of OX,x.
Proposition 1.5.2. For any point x of an affinoid variety X , the local ring OX,x is
Nöetherian

We conclude this section stating a result about local properties of affinoid varieties
[BGR, §7.3.2]. We say that an affinoid variety X is “reduced”, “normal” or “smooth” at
a point x P X , if the local ring OX,x is reduced, normal or regular, respectively.
Lemma 1.5.3. An affinoid space X “ Sp pAq is reduced or normal if and only if A is
reduced or normal, respectively.

Let Sp pA1q be an affinoid subdomain of X “ Sp pAq. Then if A is reduced or normal,
A1 is reduced or normal, respectively.

18
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1.6 Tate’s Acyclicity Theorem
We let X be an affinoid K-space and AffpXq be the category of affinoid subdomains of
X ; here we take the morphisms to be the inclusions. We have seen that, in general, OX(the functor associating to an affinoid subdomain its affinoid algebra) is a presheaf. It
is natural to ask whether this is the maximum we can obtain or, under some conditions,
we may expect to obtain a sheaf.
Recall. A presheaf F on an affinoid K-space X is a sheaf if the sequence

0 FpUq ś

iPI FpUiq
ś

i,j FpUi X Ujq
f pf |Uiq

pfiqiPI pfi|UiXUj ´ fj|UiXUjqi,j

is exact for every U P AffpXq and every covering U “ tUiu of U . A family of morphisms
pUi Ñ UqiPI in AffpXq is a covering of U if ŤiPI Ui “ U .

It is possible to prove that OX satisfies the uniqueness condition, i.e., the first
morphism is injective ([Bos, Corollaries 4.1.4 and 4.1.5]):
Lemma 1.6.1. An affinoid function f on some affinoid K-space X is zero if and only if
all its germs fx P OX,x at points x P X are zero.
Lemma 1.6.2. Let X be an affinoid K-space and X “

Ş

iPI Xi a covering by affinoid
subdomains. Then the restriction maps OXpXq Ñ OXpXiq define an injection

OXpXq ãÑ
ź

iPI

OXpXiq

The problem is that, in general, OX is far from satisfying the gluing condition
(exactness at śiPI FpUiq).
Definition. For a presheaf F on X and a covering U “ tUiuiPI of X by affinoid subdo-
mains Ui Ď X , we say that F is a U-sheaf, if for all affinoid subdomains U Ď X the
sequence above applied to the covering U|U “ tU X UiuiPI is exact.

The best result we can obtain is the following:
Theorem 1.6.3 (Tate). Let X be an affinoid K-space. The presheaf OX of affinoid func-
tions is a U-sheaf on X for all finite coverings U “ tUiuiPI of X by affinoid subdomains
Ui Ď X .

The proof of this theorem relies on restricting computations on simpler and simpler
coverings. Here we mention just few intermediate lemmas (A complete discussion can
be found in [Bos, §4.3]).
Definition. If we have two coverings U “ tUiuiPI and V “ tVjujPJ of X by affinoid
subdomains, we say that V is a refinement of U if there exists a map τ : J Ñ I such
that Vj Ď Uτpjq for any j P J .
Lemma 1.6.4. Let F be a presheaf on an affinoid K-space X and U,V two coverings
of X where V is a refinement of U. If F is a V-sheaf then it is a U-sheaf.
Lemma 1.6.5. Every affinoid covering U of X admits a rational covering as a refinement.

The next steps consists in reducing the discussion to the case of Laurent domains
Lemma 1.6.6. Let F be a presheaf on an affinoid K-space X . If F is a U-sheaf for all
Laurent coverings U of X , then it is a V-sheaf for all affinoid coverings V of X .

Finally, to prove Tate’s Theorem it suffices to do computations for Laurent coverings.
19



I. AFFINOID ALGEBRAS AND AFFINOID SPACES §1.6. TATE’S ACYCLICITY THEOREM

Instead of Theorem 1.6.3, we want to focus on a slightly stronger result which is
known as Tate’s acyclicity Theorem; this will give us the opportunity to introduce the
idea of Čech cohomology. A detailed approach to Čech cohomology can be found in
[Liu, §5.2] or [BGR, §8.1 and 8.2].

Let X be an affinoid K-space, F a presheaf (of abelian groups for instance) on X
and U “ tUiuiPI a finite covering of X made of affinoid subdomains. We denote

Ui0,...,iq “ Ui0 X . . .X Uiq pi0, . . . , iqq P I
q`1

and we set
CqpU,Fq “

ź

pi0,...,iqqPIq`1

FpUi0,...,iqq

An element of CqpU,Fq is called a q-cochain (of U in F ). We say that a q-cochain is
alternating if, for every permutation σ of the indices, fσpi0q,...,σpiqq “ sgnpσqfi0,...,iq and
fi0,...,iq “ 0 as soon as two indices are equal. CqapU,Fq denotes the module of alternating
q-cochains.

We naturally have two graded modules
CpU,Fq “

à

qě0

CqpU,Fq CapU,Fq “
à

qě0

CqapU,Fq

Let us define a coboundary map d : CqpU,Fq ÝÑ Cq`1pU,Fq. If f P CqpU,Fq, then

pdfqi0,...,iq`1 “

q`1
ÿ

i“0

p´1qk fi0,..., pik,...,iq`1

ˇ

ˇ

ˇ

Ui0,...,iq`1

It can be proved that d2 “ 0. Thus, we obtain a complex, called complex of Čech cochains
on U with values in F .

C‚pU,Fq : 0
d0

ÝÝÝÝÑ C0
pU,Fq d0

ÝÝÝÝÑ C1
pU,Fq d1

ÝÝÝÝÑ C2
pU,Fq d2

ÝÝÝÝÑ . . .

We define the Čech cohomology groups as the cohomology groups of pC‚pU,Fq, d‚q:
Hq
pU,Fq “ kerpdqq

Impdq´1q
Hq
apU,Fq “

kerpdqaq

Impdq´1
a q

Lemma 1.6.7. The inclusion C‚apU,Fq ãÑ C‚pU,Fq induces an isomorphism

Hq
apU,Fq » Hq

pU,Fq

Corollary 1.6.8. If the covering U is made of n elements, we have

Hq
pU,Fq “ 0 @q ě n

Definition. A covering U is called F-acyclic if the sequence
0

d0
ÝÝÝÝÑ F ε

ÝÝÝÑ C0
pU,Fq d0

ÝÝÝÝÑ C1
pU,Fq d1

ÝÝÝÝÑ C2
pU,Fq d2

ÝÝÝÝÑ . . .

is exact. Here ε is the argumentation map sending f Ñ pf |UiqiPI . In other words U is
F-acyclic if F is a U-sheaf and HqpU,Fq “ 0 for all q ą 0.
Theorem 1.6.9 (Tate Acyclicity Theorem). Let X be an affinoid K-space and U a finite
covering of X by affinoid subdomains. Then U is acyclic with respect to the presheaf
OX of affinoid functions on X .
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Even if nowadays we refer to Theorem 1.6.9 as Tate’s Acyclicity Theorem, it is
curious to notice that while Tate did introduce the concept of an affinoid subspace, he
did not even formulate the question of whether an arbitrary finite covering by affinoid
subspaces is acyclic ([Ked]). This was done by Gerritzen and Grauert.
Theorem 1.6.10. Let X “ Sp pAq be an affinoid K-space, M an A-module, and U
a finite covering of X by affinoid subdomains. Then U is acyclic with respect to the
presheaf M bA OX .
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CHAPTER 2 Rigid Spaces

In this chapter we introduce the notion of rigid spaces: these objects can be obtained
gluing some affinoid spaces together.

As we have seen, Tate’s acyclicity Theorem is the best result we can obtain. Thus,
OX cannot be a sheaf unless we reduce the choices for affinoid coverings; for this
purpose, we start by defining Grothendieck topologies. In the second section we will
see how to glue affinoid K-spaces together using an approach similar to the one used
in Algebraic geometry to glue schemes.

In section 3 we will explain how to associate to a K-scheme a K rigid space.
We will then introduce some constructions we can do on rigid spaces such as coho-

mology and reductions. Finally, we will give a brief look at the ideas of formal schemes
and formal geometry.

The main references for the chapter are [FvdP, Chapter 4], [BGR, Chapter 9], [Bos,
Chapter 5], [Con] and [Ked].

2.1 Grothendieck Topology
We have seen that OX , the presheaf of affinoid functions on an affinoid K-space X
endowed with the canonical topology, will usually not be a sheaf. To solve this problem,
we will try to introduce a different definition of sheaf or, more precisely, of open cover.
We present here some generalities about Grothendieck topologies. A complete reference
for this section is [Art].
Definition. A Grothendieck topology T on X (or G-topology) consists of
(a) A category CatpTq; we can think of the objects in this category as the open subsets

in X . We call each object an admissible open (or T-open) subsets of X .
(b) A set CovpTq of families pUi Ñ UqiPI of morphism in CatpTq, called admissible

coverings (or T-coverings).
Further, CatpTq and CovpTq satisfy the following conditions
(i) If U and V are in CatpTq, then U X V is also an object in CatpTq.
(ii) If Φ : V „

ÝÝÑ U is an isomorphism in CatpTq, then Φ P CovpTq.
(iii) If pUi Ñ UqiPI and pVij Ñ UiqjPJi are in CovpTq, then the same is true for the

composition pVij Ñ UqiPI, jPJi .
(iv) If pUi Ñ UqiPI is an admissible covering and V Ñ U is a morphism in CatpTq, then

the fiber products UiˆU V exist in CatpTq, and pUiˆU V Ñ Vq belongs to CovpTq.
A set X endowed with a Grothendieck topology T will be called a G-topological space.
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Definition. Let T “ pCatpTq,CovpTqq be a Grothendieck topology. A presheaf on T
with values in CatpTq is a contravariant functor F : CatpTq Ñ Sets. A presheaf F on
T is a sheaf if the sequence

0 ÝÑ FpUq ÝÑ
ź

iPI

FpUiq ÝÑ
ź

i,j

FpUi ˆU Ujq

is exact for any admissible covering pUi Ñ UqiPI .
Now we specialize the definition to the case of affinoid K-spaces.

Definition. Let X “ Sp pAq be an affinoid K-space. Let CatpTq be the category of
affinoid subdomains of X with the inclusions as morphisms. The set CovpTq consists
of all finite families pUi Ñ UqiPI of inclusions of affinoid subdomains of X such that
U “ Ť

iPI Ui. We call T the weak Grothendieck topology on X .
By Tate’s Acyclicity Theorem we know that OX is a sheaf for the weak Grothendieck

Topology.
There is a canonical way of enlarging and refining this topology:

Definition. Let X be an affinoid K-space. The strong Grothendieck topology on X is
defined by:
(i) A subset U Ď X is an admissible open if there is a covering U “ tUiuiPI of U

by affinoid subdomains Ui Ď X such that for all morphisms of affinoid K-spaces
φ : W Ñ X satisfying φpWq Ď U , the covering tφ´1pUiquiPI of W admits a
refinement that is a finite covering of W by affinoid subdomains.

(ii) A covering pVi Ñ VqiPI of some admissible open subset V Ď X by admissible open
sets Vi is called admissible if for each morphism of affinoid K-spaces φ : W Ñ X
satisfying φpWq Ď U , the covering tφ´1pUiquiPI of W admits a refinement by
finitely many affinoid subdomains.

We need to prove that the strong G-topology is indeed a Grothendieck topology:
Proposition 2.1.1. Let X be an affinoid K-space. The strong Grothendieck topology is
a Grothendieck topology on X satisfying the following completeness conditions:

(G0) H and X are admissible opens.

(G1 ) If pUi Ñ UqiPI is an admissible covering of an admissible open subset U and
V Ď U is a subset such that V X Ui is an admissible open for all i P I , then V is
an admissible open in X .

(G2) If pUi Ñ UqiPI is a covering of an admissible open set U Ď X by admissible
open subsets Ui Ď X such that pUiqiPI admits an admissible covering of U as
refinement, then pUiqiPI is admissible too.

We already know, from Proposition 1.4.8, that every morphism of affinoid K-spaces
φ : X Ñ Y is continuous with respect to the weak Grothendieck topology. The next
result shows that this is also true for the strong Grothendieck topology:
Proposition 2.1.2. Let φ : X Ñ Y be a morphism of affinoid K-spaces. Then φ is
continuous with respect to the strong Grothendieck topologies on X and Y .
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We also want to mention that the strong G-topology is related to the Zariski topology
in this sense:
Lemma 2.1.3. Let X be an affinoid K-space. Then, the strong Grothendieck topology
on X is finer than the Zariski topology.

We have seen that OX , the presheaf of affinoid functions, is a sheaf for the weak G-
topology. Further, we have observed that many of the properties of the weak G-topology
are inherited by the strong one. It is therefore natural to ask whether this construction
preserves the structure of sheaves or not. For a complete approach one can refer to
[BGR, §9.2].
Proposition 2.1.4. Let X be an affinoid K-space. Then, any sheaf F on X with respect
to the weak Grothendieck topology admits a unique extension with respect to the strong
Grothendieck topology.

The proof consists in studying the sheafification of some extension of the sheaf
with respect to the strong G-topology and then to prove that any other extension is
isomorphic to it. The idea relies on the fact that the strong Grothendieck topology T is
slightly finer than the weak one Tw which means that the admissible opens of Tw form
a basis for T and each Tw-covering admits a T-covering as a refinement [Bos, §5.2].

This last result shows that there is a unique way to extend the sheaf OX in the
weak Grothendieck topology to the strong Grothendieck topology. The resulting sheaf
is called the sheaf of rigid analytic functions on X and it is denoted by OX as well.

2.2 Rigid Analytic Spaces
Finally, we are ready to give the definition of general rigid spaces.
Definition. A G-ringed K-space is a pair pX,OXq consisting of a G-topological space
X and a sheaf of K-algebras OX on X .
Definition. A locally G-ringed space is a G-ringed space pX,OXq over K such that for
every x P X , the stalk OX,x is a local ring.

The trivial example is the case of affinoid K-spaces. If X “ Sp pAq is an affi-
noid space, then we can see X as a G-ringed K-space if we endow it with the strong
Grothendieck topology and we consider the sheaf of rigid analytic functions OX . Fur-
ther, thanks to Proposition 1.5.1, we conclude that pSp pAq ,OSppAqq is a locally G-ringed
space over K .
Definition. A morphism of G-ringed spaces over K is a pair

`

φ, φ˚
˘

: pX,OXq ÝÑ pY,OY q

where φ is a continuous map and φ˚ is a collection of K-algebra homomorphisms
φ˚V : OY pVq Ñ OXpφ

´1pVqq, for each admissible open V Ď Y , such that this family
is compatible with restriction homomorphisms induced by inclusions W Ď V . In other
words, we want to have a commutative diagram:

OY pVq OXpφ
´1pVqq

OY pWq OY pφ
´1pWqq

φ˚
V

φ˚
W
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Taking the direct limit, one gets a ring homomorphism
φ˚x : OY,φpxq ÝÑ OX,x @x P X

Definition. The pair pφ, φ˚q is a morphism of locally G-ringed spaces if pX,OXq and
pY,OY q are locally G-ringed spaces and φ˚x is a map of local rings for each x P X .

It is more or less clear that we are somehow reconstructing the theory of schemes
that is used in algebraic geometry in the non-archimedean setting.

Coming back to our example, we have seen that affinoid spaces have a natural
structure of locally G-ringed spaces. The problem now is how to extend the notion of
morphisms of K-affinoid spaces to morphisms of locally G-ringed spaces over K . Let
φ : X Ñ Y be a morphism of affinoid K-spaces. We know from Proposition 2.1.2 that φ
is continuous and then we can take it as first component. We only have to describe how
φ˚ acts. If V is an affinoid subdomain of Y , we know from Proposition 1.4.8 that φ´1pVq
is an affinoid subdomain of X and φ induces a unique affinoid map φV : φ´1pVq Ñ V .
Now we denote

φ˚V : OY pVq Ñ OXpφ
´1
pVqq

the associated map of affinoid algebras.
Since affinoid subdomains form a basis for the strong Grothendieck topology, we can

now extend the construction to all the admissible open subsets of Y using admissible
coverings; namely, if V “ tViui is an affinoid covering of an admissible open V Ď Y ,
then

@f P OY pVq φ˚V pfq
ˇ

ˇ

φ´1pViq “ φ˚Vipf |Viq i P I

Proposition 2.2.1. If X and Y are affinoid K-spaces, there is a one-to-one corre-
spondence between K-affinoid maps X Ñ Y and maps of locally G-ringed spaces
pX,OXq Ñ pY,OY q. In other words, the functor from the category of K-affinoid spaces
to the category of locally G-ringed spaces is fully faithful.

This result allows us to see the category of affinoid K-spaces as a subcategory of
the category of locally G-ringed spaces. In particular, we will use this fact to think of
rigid spaces as locally G-ringed spaces that, locally, are affinoid spaces in a similar
fashion as schemes that locally are affine schemes.
Definition. A rigid analytic K-space is a locally G-ringed space pX,OXq over K such
that
1. The G-topology of X satisfies conditions (G0), (G1) and (G2) of Proposition 2.1.1.
2. X admits an admissible covering pXiqiPI where `

Xi, OX |Xi

˘ is an affinoid K-space
for all i P I .

A morphism of Rigid analytic spaces is a morphism of locally G-ringed spaces.
Example. Any admissible open subset of an affinoid K-space X is a rigid space. This
follows immediately from the axioms of Grothendieck topologies ([Con, Example 2.4.2])
Proposition 2.2.2. Let X be a rigid K-space and Y an affinoid K-space. Then the
canonical map

HompX, Y q ÝÑ HompOY pY q,OXpXqq

φ ÝÑ φ˚Y

is bijective.
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We present here the general technique to glue rigid spaces together:
Proposition 2.2.3 (Pasting Analytic Spaces). Suppose that the following data are given:
(i) Rigid K-spaces pXiqiPI .

(ii) Open subspaces Xi,j Ď Xi and isomorphisms φi,j : Xi,j Ñ Xj,i, for all i, j P I
Assume that the following conditions hold:
(a) φi,j ˝ φj,i “ Id, Xi,i “ Xi and φi,i “ Id.

(b) The map φi,j induces isomorphisms φi,j,l : Xi,j XXi,l Ñ Xj,i XXj,l such that φi,j,l “
φl,j,i ˝ φi,l,j for all i, j, l P I .

Then the Xi’s can be glued by identifying Xi,j with Xj,i via φi,j to yield a rigid K-
space X admitting pXiqiPI as an admissible covering. More precisely, there exists a
rigid K-space X with an admissible covering pX 1

iqiPI and isomorphisms ψi : Xi
„
ÝÝÑ X 1

i

giving rise to isomorphisms ψi,j : Xi,j Ñ X 1
i XX

1
j such that the diagram

Xi,j

X 1
i XX

1
j

Xj,i

ψi,j

ψj,i

„φi,j

commutes for all i, j, P I ; the analytic space X is unique up to isomorphism.
Corollary 2.2.4. For two rigid K-spaces X and Y over Z , the fiber product X ˆZ Y
can be constructed.
Proof. Since we know how to construct the fiber product between affinoid K-spaces
(Proposition 1.3.4), we can work locally and then glue together the affinoid spaces.

2.3 Analytification
In this section we will describe how to associate (in a functorial way) to any K-scheme
of locally finite type X a rigid analytic space X rig called the rigid analytification of X .
Some good references are [Bos, §5.4], [BGR, §9.3.4], [Tia, §2.3] and [Ber1, §0.3]. Some
examples can also be found in [Con, §2.4].

We start by presenting how to construct a rigid analytic analogue for the n-
dimensional affine space over K .

Choose a constant c P K with |c| ą 1. For i P N Y t0u we denote by Ai the
K-algebra of power series

ÿ

ν

aνζ
ν
P KJζK where ζ “ pζ1, . . . , ζnq

converging on the ball of center 0 and radius |c|i in `

Kalg˘n:
Ai “ Tn,ρ “ t

ÿ

ν

aνζ
ν
P KJζK | lim

ν
ρν |aν | “ 0u “ Kxc´iζ1, . . . , c

´iζny

where ρ “ p|c|i, . . . , |c|iq.
The Ai’s occur in a decreasing sequence

A0 Ą A1 Ą A2 Ą . . . Ą Krζs

and they are all affinoid algebras.
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There is a canonical isomorphism Ai “ Ai`1xc
´1ζy and hence, we have an inclusion

Ai`1 ãÑ Ai inducing a map of K-affinoid spaces Sp pAiq Ñ Sp pAi`1q which identifies
Sp pAiq with an affinoid subdomain of Sp pAi`1q. This yields an increasing sequence of
affinoid subdomains

Bn Sp pA0q Sp pA1q Sp pA2q . . .

X0 X1 X2

Set Xi,j “ Xminti,ju and φi,j : Xi,j Ñ Xj,i to be the identity map. Now we apply
Proposition 2.2.3 and we glue together the Xi’s. The resulting space is a rigid analytic
space which is not an affinoid. We denote it by

An,rig
K “

ď

r

Bn p0, |c|rq

Remark. Observe that the construction is independent of the choice of c.
Now we would like to generalize this process to arbitrary algebraic varieties over

K .
LetB be a finitely generatedK-algebra: B “ Krζ1, . . . , ζns{a where a Ď Krζ1, . . . , ζnsis an ideal. Using the notation introduced before, we get a sequence of K-algebras

homomorphisms
A0{aA0 ÐÝ A1{aA1 ÐÝ A2{aA2 ÐÝ A3{aA3 ÐÝ . . .ÐÝ B

which yields an increasing sequence of affinoid subdomains
Sp pA0{aA0q ãÑ Sp pA1{aA1q ãÑ Sp pA2{aA2q ãÑ Sp pA3{aA3q ãÑ . . .

One can construct a rigid analytic space X rig by gluing together these affinoids:
X rig

“
ď

rě0

Sp pAr{aArq

Remark. X rig admits tSp pAr{aArqurPN as covering.
Definition. Let pX,OXq be a K-scheme of locally finite type. A rigid analytification
of pX,OXq is a rigid K-space `

X rig,OXrig
˘ together with a morphism of locally G-

ringed K-spaces pι, ι˚q :
`

X rig,OXrig
˘

ÝÑ pX,OXq satisfying the following universal
property: given a rigid K-space pY,OY q and a morphism of locally G-ringed K-spaces
pY,OY q Ñ pX,OXq, the latter factors through pι, ι˚q via a unique morphism of rigid
K-spaces pY,OY q Ñ

`

X rig,OXrig
˘.

Proposition 2.3.1. Let X and Y be two K-schemes of locally finite type.
1. X admits a unique structure of rigid analytic space X rig on X satisfying the following

properties:

(a) The underlying map of sets identifies the points of X rig with the closed points
of X .

(b) For every open subset U Ď X (respectively open covering of U ), U XX rig is
an admissible open of X rig (resp. an admissible covering of U Ď X rig).

(c) For every affine open subset U Ď X , the structure of rigid space induced on
U XX rig coincide with the one of U rig.

2. The rigid analytification defines a functor from the category of K-schemes of locally
finite type to the category of rigid K-spaces.
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Example (Projective space). Pn,rigK as a rigid analytic variety can be obtained by pasting
n copies of the rigid affine An,rig

K . Then Pn,rigK is covered by n` 1 copies of BnK -balls of
radius one-; these are isomorphic to

Xi “ Sp
ˆ

Kx
ζ0

ζi
, . . . ,

ζn
ζi
y

˙

i “ 0, . . . , n

where we identify ζi{ζi with the constant 1.
Example (Elliptic curves). Given an elliptic curve E over K with split multiplicative
reduction (jpEq ą 1), Tate showed that there exists a unique q P Kˆ with |q| ă 1 such
that

E rig
» Gm{q

Z

and every such q occurs. Here Gm is the multiplicative group scheme over K which can
be cut out of A2 ([BGR, Example 9.3.4(4)] and [FvdP, §5.1]).

2.4 Coherent Sheaves
In this section we provide a brief description of coherent sheaves on rigid spaces. We’ll
mainly follow [FvdP, §4.4-4.5].

Let X “ pX,TX ,OXq be a rigid space provided with the Grothendieck topology. It
has an admissible affinoid covering tXiuiPI and we can use it to construct sheaves on
X by gluing sheaves on Xi. Suppose the following data are given:
a) On each Xi a sheaf Fi.
b) For every i, j, an isomorphism of sheaves ψi,j : Fi|Xi,j Ñ Fi|Xi,j where Xi,j “

Xi XXj .
c) For every i, j, k P I , ψi,j ˝ ψj,k “ ψi,k on Xi,j,k.
Then there exist a (unique up to isomorphism) sheaf F on X and isomorphisms

ψi : F |Xi Ñ Fi such that ψi,j ˝ ψj “ ψi

Definition. A sheaf of OX-modules F on a rigid space X is called coherent if there exist
an admissible affinoid covering tXiuiPI of X and, for every i P I , a finitely generated
OXpXiq-module Mi such that the restrictions of F to Xi is isomorphic (as a sheaf of
OX-modules) to M̃ where M̃pUq “Mi bOXpXiq OXpUq
Definition. The sheaf F is called locally free of rank r (or rigid vector bundle of rank
r) if the admissible affinoid covering tXiu can be chosen such that each Mi is a free
OXpXiq module of rank r.
Theorem 2.4.1 (Kiehl). For every coherent sheaf F on an affinoid space X “ Sp pAq
there is a finitely generated A-module M such that F is isomorphic to the sheaf of
OX-modules M̃ .

Definition. We present some definitions relative to morphism of rigid spaces:
• A morphism of rigid K-spaces φ : X Ñ Y is called a closed immersion if there

exists an admissible affinoid covering tYiuiPI such that, for all i P I , the induced
morphism φi : φ´1pYiq Ñ Yi is a closed immersion of affinoid K-spaces, i.e., φi is a
morphism of affinoid spaces (for instance Yi “ Sp pBiq and φ´1pYiq “ Sp pAiq), and
the corresponding morphism of affinoid K-algebras Bi Ñ Ai is an epimorphism.
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• A rigid K-space X is called quasi-compact if it admits a finite admissible affinoid
covering. A morphism of rigid K-spaces is called quasi-compact if for each quasi-
compact open subspace Y0 Ď Y , its inverse image φ´1pY0q is quasi-compact.

• A morphism of rigid K-spaces φ : X Ñ Y is called separated (resp. quasi-
separated) if the diagonal morphism ∆ : X Ñ X ˆY X is a closed immersion
(resp. a quasi-compact morphism).

• A rigid K-space X is called separated (resp. quasi-separated) if the structural
morphism X Ñ Sp pKq is separated (resp. quasi-separated).

• A morphism f : X Ñ Y of rigid spaces is said to be finite if Y has an admissible
affinoid covering tYiuiPI such that each f´1pYiq is an affinoid and OY pYiq Ñ
OXpf

´1pYiqq is a finite morphism of affinoid algebras.
Definition. A morphism of rigid K-spaces φ : Y Ñ X is called smooth if there exist
admissible affinoid coverings tYiuiPI and tXiuiPI of Y and X respectively, such that
(i) fpYiq Ď Xi.
(ii) If Ai “ OXpXiq and Bi “ OY pYiq, then there exist an isomorphism

Bi “
AixT1 . . . , Tny

pfi, . . . , fmq

such that
det

ˆ

Bfj
BTk

˙

1ďj,kďm

is invertible in Bi. If, further, m “ n, then φ is said to be étale.
Definition. A rigid K-space X is said to be connected if one of the following equivalent
conditions hold:
(a) OXpXq has no nilpotent elements outside 0 and 1.
(b) There is no admissible covering of X consisting of two disjoint opens.

We conclude this section by mentioning that there is a technique to associate to a
rigid space X a reduced rigid space X red ([FvdP, Exercise 4.6.2]). In general, this is
similar to the one used to associate to a scheme its reduced scheme ([Liu, §2.4.1]). If
X “ pX,TX ,OXq is a rigid space, then

X red
“ pX,TX ,OX{N q

where N Ă OX is a coherent sheaf of ideals on X such that for every admissible affinoid
U Ď X , N pUq is the ideal of nilpotent elements of OXpUq.
Proposition 2.4.2. X red has a structure of rigid space and it satisfies the following
universal property: for every morphism g : Y Ñ X with Y reduced, there exists a
unique morphism h : Y Ñ X red such that g “ ι ˝ h where ι : X red Ñ X is the canonical
morphism.

Y X

X red

g

D!h ι
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2.5 Analytic Reductions
In this section we want to attach to a rigid K-space X its analytic reduction, i.e., a
reduced algebraic variety over the residue field k. In order to be able to do that we
recall some definitions. If X “ Sp pAq is an affinoid K-space, then we denote by

Ao “ ta P A ‖a‖ ď 1u

the OK-algebra of functions over X with norm less than or equal to 1. It contains the
ideal

Aoo “ ta P A ‖a‖ ă 1u

Finally, we denote by A the quotient Ao{Aoo. The latter is a finitely generated k-
algebra which turns out to be reduced since the spectral norm is power multiplicative.
Definition. The reduced affine k-scheme Xc

“ MaxpAq is called the canonical reduction
of the affinoid K-space X .
Remark. We are using the set of maximal ideals instead of the prime spectrum because
this allows us to define a canonical reduction map

Red “ RedcX : X ÝÑ X

defined by
x ÝÑ kerpA ÝÑ A{mxq

where we recall that A{mx is a finite extension of K and, therefore, it carries a unique
valuation extending the one of K . The map whose kernel appears in the definition of
RedcX is the reduction of the quotient map AÑ A{mx.
Proposition 2.5.1. The map RedcX is surjective.

Proposition 2.5.2. The preimage pRedcXq
´1
pUq of a Zariski open subset U of Xc is an

admissible open in X .

Sketch of Proof. If f P Ao with ‖f‖ “ 1, then f R RedcXpxq if and only if |fpxq| ě 1.
This means that

pRedcXq´1
pMaxpAf qq “ X

ˆ

1

f

˙

2.6 Towards Formal Geometry
So far, we have worked over the field K . The idea of formal rigid geometry is to replace
K by its ring of integers OK . In this way we obtain OK-algebras that can be regarded
as OK-models for affinoid K-algebras.

The idea is that, taking generic fibers (tensoring over OK with K), one should obtain
affinoid K-algebras.

In this section we will try to follow a more general approach working with general
topological rings. Some good references are [Ber1, §0], [Bos, Chapter 7], [Tia, Chapter
3], [FvdP, §4.8], [Con, §3.3] and [Lüt, Chapter 3].

Let’s consider a topological ring A.
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Definition. We say that A is adic if the topology on A is a-adic for some ideal a Ď A
and A is separated and complete for this topology.

The ideal a is usually called the ideal of definition.
Remark. The first property is equivalent to: for any a P A, pa ` anqně0 form a basis of
open neighborhoods of a P A. The second request means that A “ lim

ÐÝn
A{In.

One can associate to A an affine formal scheme
X “ SpfpAq “ lim

ÝÑ
n

SpecpA{anq
One can see that X , as a topological space, consists of all open prime ideals p Ď A.
An ideal p Ď A is open if and only if it contains a power of a which means that SpfpAq
is canonically identified with SpecpA{aq.

In this way the Zariski topology on SpecpA{aq induces a topology on SpfpAq: for
any f P A, we denote Dpfq “ tx P SpfpAq fpxq ‰ 0u “ tp Ď A p prime, f R pu.

Then
Dpfq ÝÑ Axf´1

y :“ lim
ÐÝ
n

pA{anq
“

f´1
‰

defines a presheaf O of topological rings on the category of subsets Dpfq Ď SpfpAq,
f P A.
Lemma 2.6.1. O is, in fact, a sheaf.

Proof. Let Dpfiq be an open covering of Dpfq. The sequence
0 ÝÑ A{an

“

f´1
‰

ÝÑ
ź

i

A{an
“

f´1
i

‰

ÝÑ
ź

i,j

A{an
“

pfifjq
´1
‰

is exact. Now we use the fact that the inverse limit is left exact. If we apply lim
ÐÝ

we
obtain another left exact sequence

0 ÝÑ Axf´1
y ÝÑ

ź

i

Axf´1
i y ÝÑ

ź

i,j

Axpfifjq´1
y

which implies that O is a sheaf.
For any x P X “ SpfpAq, let px Ď A be the corresponding open prime ideal. We

define
OX,x “ lim

ÝÑ
xPDpfq

Axf´1
y

The following Lemma ([Tia, p. 3.1.2]) tells us that our construction is the correct one:
Lemma 2.6.2. The ring OX,x is local with maximal ideal pxOX,x.

Definition. A formal scheme is a locally topologically ringed space pX,OXq such that
every point x P X admits an open neighborhood U such that pU , OX |Uq is isomorphic
to an affine formal scheme SpfpAq for some adic ring A.

Now we fix a non-archimedean field K and we consider its ring of integers OK . We
also choose an element π in OK such that 0 ă |π| ă 1. Define

OKxζ1, . . . , ζny “ lim
ÐÝ
n

OK{pπ
n
q rζ1, . . . , ζns

This is a separated complete π-adic OK-algebra and it can be regarded as the integral
model of the Tate algebra Kxζ1, . . . , ζny.
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Remark. If OK is not discrete valued, then OKxζ1, . . . , ζny is not Nöetherian.
Definition. We say that a topological OK-algebra A is
i. of topologically finite type if A is isomorphic to OKxζ1, . . . , ζny{b, equipped with the

π-adic topology where b Ď OKxζ1, . . . , ζny is an ideal;
ii. of topologically finite presentation if, in addition to i., the ideal b is finitely generated;
iii. admissible if A is topologically of finite presentation and A is flat over OK .

We present here a series of results that might be useful in the proceeding The proofs
can be found in [Tia, §3.2].
Theorem 2.6.3. Let A be an OK-algebra of topologically finite type, and M be a
finitely generated A-module which is flat over OK . Then, M is an A-module of finite
presentation.

Corollary 2.6.4. Let A be an OK-algebra of topologically finite type. If A is flat over
OK , then A is of topologically finite presentation over OK .

Proposition 2.6.5. Let A be an OK-algebra of topologically finite type and M be a
finite A-module. Then M is π-adic separated and complete.

Corollary 2.6.6. Every OK-algebra of topologically finite type is separated and com-
plete for the π-adic topology.

2.7 Analytic Spaces and Formal Schemes
To every formal scheme X of locally finite type over OK one can associate a rigid
analytic K-space XK thanks to the work of Raynaud ([Ber1, §0.2]).

Let X “ SpfpAq a formal affine OK-scheme of finite type. Since A is of topologically
finite type, AbK is a Tate algebra and, then, the affinoid K-space XK can be defined
by:

XK “ Sp pAbOK Kq

Definition. If X is an admissible formal OK-scheme, a rigid point of X is a morphism
j : Y Ñ X of admissible formal schemes such that j is a closed immersion and

Y “ SpfpBq
with B a local integral domain of dimension 1.

Two rigid points j1 : Y1 Ñ X and j2 : Y2 Ñ X are said to be equivalent if there
exists an isomorphism ι : Y1 Ñ Y2 such that j1 “ j2 ˝ ι.We denote PtsrigpXq the set of isomorphism classes of rigid points on X.
Lemma 2.7.1. Let X “ SpfpAq be an affine admissible formal OK-scheme. Then there
exist canonical bijections between the following sets of points:

(a) Isomorphism classes of rigid points on X.

(b) Non open prime ideals p Ď A such that dimpA{pq “ 1.

(c) Maximal ideals in AbOK K .
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Moreover, the bijections between the three sets of points are given as follows:
1. Given a rigid point j : Y “ SpfpBq Ñ SpfpAq defined by a surjection j˚ : A Ñ B,

we associate to j the prime ideal p “ kerpj˚q which is a point of type (b).

2. Given a non open prime ideal p Ď A, we associate to it the prime ideal pK “

pbOK K Ď AbOK K , which is a maximal ideal of AbOK K .

3. Given a maximal ideal m Ď AbOKK , let p “ mXA; we associate to it the canonical
morphism SpfpA{pq Ñ SpfpAq.

Proof. Firstly, we focus on the map defined in 1:
PtsrigpXq ÝÑ tp Ď A p non open, dim pA{pq “ 1u

pj : Sp pBq Ñ Xq ÝÑ kerpj˚q

Clearly kerpj˚q is a prime ideal and it is not open since B is flat over OK .
Now let’s have a look at the map defined in 2.

tp Ď A p non open, dim pA{pq “ 1u ÝÑ Sp pAbOK Kq

p ÝÑ pK “ pbOK K

we need to prove that pK is a maximal ideal. Suppose that there is a prime ideal q Ď A
with p Ă q. Then q is a maximal ideal (since dimpA{pq “ 1). Furthermore, q must
be open in A (otherwise we would have πA ` q “ A for π P OK , 0 ă |π| ă 1, which
yields an equation of type 1 ´ aπ “ q for some a P A, q P q and this would imply
the invertibility of q which is a contradiction). It follows that pK is a maximal ideal in
AbOK K .

Finally,
Sp pAbOK Kq ÝÑ PtsrigpXq

m ÝÑ pj : SpfpA{pq Ñ SpfpAqq p “ mXA
We have a natural inclusion B “ A{p ãÑ K 1 “ pAbOK Kq {m where K 1 is a finite
extension of K . We denote by B the image of A in K 1. It is possible to prove that OK1is the integral closure of OK in K 1 and B Ď OK1 ([Bos, Lemma 8.3(6)]). It follows that
AÑ B gives rise to a rigid point SpfpBq Ñ SpfpAq and the quotient A{p is isomorphic
to B.

All these maps are injective by construction and, if we compose them, we get the
identity on PtsrigpXq. This is enough to prove that they are all bijections.
Corollary 2.7.2. If X is a formal OK-scheme, then there is a bijection of sets

PtsrigpXq ÐÑ XK

Remark. In general, if X is an arbitrary admissible formal OK-scheme, we can construct
XK by gluing together the rigid spaces associated to Xi “ SpfpAiq where the Xi’s form
a formal affine covering of X.

Let j : Y “ SpfpBq Ñ X be a rigid point. It induces a closed immersion
jk : SpecpB bOK kq Ñ Xk “ XbOK k

Since B is a local integral domain, SpecpB bOK kq consists only of a single point.
Thus, the image jk is a well-defined closed point on the special fiber Xk, usually called
the specialization of j. Using the previous corollary, we conclude that there exists a
canonical specialization map

sp : XK ÝÑ Xk
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Proposition 2.7.3. Let X and X1 be two formal OK-schemes of locally finite presentation.

(a) There exists a unique structure of rigid analytic space on XK satisfying the following
properties:

(i) The inverse image of every open (resp. open covering) of Xk is an admissible
open (resp. admissible covering) of XK .

(ii) For every open affine subscheme U Ď X with reduction Uk Ď Xk, the structure
induced on UK “ sp´1pUkq by XK is the same as the one induced by U , i.e.,
sp´1pU0q “ U rig.

(b) The construction of XK is functorial and, for every morphism of formal OK-schemes
σ : XÑ X1, the following diagram commutes:

XK Xk

X1K X1k

sp

σK σk

sp

(c) This functorial construction preserves open and closed immersions.

The space XK is called generic fiber of X.
We conclude this section with few facts about the generic fiber ([Ber1, Remarks

0.2.4]).
Remark. The rigid analytic space XK is quasi-separated.
Remark. If X is of finite type, then XK is quasi-compact.
Remark. XK depends only on the biggest formal flat subscheme of X.
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CHAPTER 3 p-adic Abelian Integrals

In this chapter we introduce the theory of p-adic integration developed by Coleman in
[Col1] and [Col3].

In the first section we will try to give an intuition of the methods used starting from a
classical example; we will then review (Sections 3.2 - 3.4) some basic notions required
to fully understand the ideas of Coleman. Finally, in Section 3.5 we will prove the main
Theorem of Coleman’s integration.

The main references are the original articles by Coleman: in [Col1] we can find an
explicit theory of p-adic integrals on P1, in [Col3] (which is the article we will mainly
follow) we have a general theory of p-adic integrals for differentials of the II kind on
varieties of any dimension having good reduction at p and, finally, in [CdS] the theory
is extended to arbitrary forms on curves with good reduction.

In addition, one can refer to [Bre, §1.2], for a more expository treatise of the theory,
or [Bes].

3.1 Battle Plan
We give here a naïve description of the Coleman theory referring to the following
sections for all the details.

Suppose that K is a complete subfield of Cp and suppose we are give a variety X
over K with good reduction and a closed holomorphic one form ω on X .
Question. How can we define

ż Q

P

ω

for P,Q P XpKq or XpKalgq?
More in general, we would like to construct a coherent Theory of integration on X ,

i.e., we would like to have
• Additivity at points:

ż Q

P

ω `

ż R

Q

ω “

ż R

P

ω.

• Linearity on forms: λ1

ż Q

P

ω1 ` λ2

ż Q

P

ω2 “

ż Q

P

pλ1ω1 ` λ2ω2q.
• Change of variables: if Φ : X Ñ X 1 is a morphism with some “good properties”

and ω1 is a one form on X 1, then
ż Q

P

Φ˚
pω1q “

ż ΦpQq

ΦpP q

ω1.

• Fundamental Theorem of Calculus:
ż Q

P

df “ fpQq ´ fpP q.
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P

Q

Figure 3.1: Integration path from P to Q
A first attempt can be mimicking the standard integration theory developed for va-

rieties over C:
1) Cover X with (in the case of rigid spaces) affinoid subdomains.
2) Integrate on each affinoid.
3) Adjust the constant of integration and do analytic continuation.

P

Q

Figure 3.2: Affinoid Covering
We have seen in the previous chapter that point 1 cause non problem. Also point 3 is
not an issue since affinoids have plenty of intersections. The problem is that there is
no natural way of integrating on affinoids.

We present here a classical example following [Bes].
Example. Suppose we are given the space X “ tz P K |z| “ 1u where K is a complete
subfield of Cp. Now consider the form ω “ dz{z. Ideally, we would like to obtain the
logarithmic function logpzq as primitive of ω.

• Choose α P X .
• Expand ω in power series centered at α:

ω “
dpα ` xq

α ` x
“

dx

α ` x
“

1

α

dx

1` x
α

“
1

α

`8
ÿ

n“0

p´1qn
´x

α

¯n

dx

36



III. P-ADIC ABELIAN INTEGRALS §3.1. BATTLE PLAN

• Integrate term by term:
Fωpα ` xq “

`8
ÿ

n“0

p´1qn

n` 1

´x

α

¯n`1

` C

which converges for |x| ă 1 [Gou, §4.5].
Now the strategy in C would be to play with the constant C doing analytic continua-
tion: cover X with open disks and adjust C so that the two expansions agree on the
intersection. In the p-adic word this is not possible since two open disks are either
disjoint or one contained in the other (Proposition 0.1.1).

|x| < 1 |x + 1| < 1|x � 1| < 1

Figure 3.3: Covering of OK by residue disks
Our first idea yields nothing. Trying to solve this problem, we can cover our affinoid

by residue disks. We have seen that there is a way of integrating on residue disks:
Back to the example. We recall that α P X “ tz P K |z| “ 1u and ω “ dz{z. z “ α`x,
|z| ă 1

Fωpα ` xq “ logpα ` xq ` Cα “ logp1`
x

α
q ` Cα

Unfortunately, the price we pay is the loss of intersections since residue disks are
completely disjoint. Here intervenes Coleman: his solution consists in using Frobenius
endomorphims to connect integrals in disjoint residue disks.

P

↵

Q
↵0

Frobenius

Figure 3.4: Continuation along Frobenius between two residue disks
Back to the example. If X “ tz P K |z| “ 1u, we can take

Φ : X ÝÑ X

z ÝÑ zp
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Coleman’s idea is to use the fact that Φ˚ω “ pω to find a relation between integrals:
Φ˚Fω “ pFω ` C

Supposing C “ 0 (we can just adjust Fω by constants), we get
Fωpz

p
q “ pFωpzq

Now, if α satisfies αpk “ α (we will see that this is reasonable), then
Fωpαq “ Fωpα

pk
q “ pkFωpαq ùñ Fωpαq “ 0

This determines Fω on the disk |z ´ α| ă 1 and therefore on the whole X .
In this first section we have assumed without proving many facts (for instance the

existence of these Frobenius endomorphisms or of some points fixed by powers of Frobe-
nius); in the following sections we will fix all the details.

3.2 Lifting Morphisms
Let X be an affinoid over K (our complete subfield of Cp) and ApXq be the algebra of
rigid analytic functions on X .
Notation. Here we follow the notation in [Col3]: ApXq :“ OXpXq.

Consider, as in Section 2.5, A0pXq “ tf P ApXq ‖f‖ ď 1u with respect to the
spectral seminorm ‖ ‖. We recall that, if X is reduced, then ‖ ‖ is, in fact, a norm
(Corollary 1.2.9 and Lemma 1.5.3) and ApXq is complete with respect to this norm
(Theorem 1.2.10).

We define
ÃpXq “

A0pXq

pA0pXq

X̃ “ SpecpÃpXqq
If A0pXq is of topologically finite type, then X̃ is a scheme of finite type over F “ OK{p.
Definition. We say that X has good reduction if A0pXq is of topologically finite type
over OK and X̃ is smooth over F (X̃Falg is regular).

We have a natural reduction map
red : X ÝÑ X̃pFq

x ÝÑ x̃ “ xX A0pXq mod pA0pXq

and if we extend the scalars, we get redCp : XCp ÝÑ X̃pFlgq.
Lemma 3.2.1 ([Ber1, Lemma 1.1.1]). If u P X̃pFalgq, then red´1

puq (residue class in X)
has a natural structure of rigid space over Cp.

Let us consider a morphism of affinoid K-spaces φ : X Ñ Y ; we denote φ̃ : X̃ Ñ Ỹ
its reduction. Viceversa, if ψ : X̃ Ñ Ỹ is a morphism over F, we say that ψ̄ : X Ñ Y is
a lifting of ψ if ˜̄ψ “ ψ.
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Theorem 3.2.2.A. Let K be discretely valued or K “ Cp. Suppose that

W X

Y Z

œ (˚)

is a commutative diagram of reduced K-affinoids such that W Ñ Y is a closed im-
mersion (with the meaning of Section 3.4) and X̃ is smooth over Z̃ . If h : X̃ Ñ Ỹ is
a morphism commuting with the reduction of (˚), then there exists a lift h̄ : Y Ñ X
commuting with (˚).

W̃ X̃

Ỹ Z̃

h „„„„„„„�

W X

Y Z

h̄

We will prove an analogue of Theorem 3.2.2.A for affinoid algebras (recall that in
section 1.3 we have seen how to go back a forth from maps of affinoid algebras and
morphisms of affinoid spaces).
Definition. A Tate OK-algebra is an OK-algebra of the form

OKxζ1, . . . , ζny{I

for some finitely generated ideal I of OKxζ1, . . . , ζny, the completion of OKrζ1, . . . , ζns.
Let A be a Tate OK-algebra and set Ã “ A{pA.

Definition. The annihilator in A of r P OK is
AnnAprq “ ta P A ra “ 0u

Definition. Given a homomorphism of Tate OK-algebras A Ñ B, we say that B is
OK-torsion free over A if

AnnBprq “ AnnAprq ¨B @r P OK

Definition. We say that B is formally smooth over A if B̃ is smooth over Ã and B is
OK-torsion free over A.
Theorem 3.2.2.B. Let K be discretely valued or K “ Cp. Suppose that

D B

C A

œ (˚1)

is a commutative diagram of Tate OK-algebras such that C̃ Ñ D̃ is surjective and B is
formally smooth over A. If s : B̃ Ñ C̃ is a homomorphism commuting with the reduction
of (˚1), then there exists a lift s̄ : B Ñ C which makes the following into a commutative
diagram:

D B

C A

s̄
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Proof. The proof consists of several lemmas patched together.
Lemma 3.2.3. If ψ : A � B is a surjective homomorphism of Tate OK-algebras, then
its kernel is finitely generated.

Proof. Without loss of generality we can assume that A “ OKxζ1, . . . , ζmy (A is a quo-
tient of OKxζ1, . . . , ζmy). By hypothesis, we know that B is a quotient of OKxζ1, . . . , ζnyby some finitely generated ideal J:

0 ÝÑ J ÝÑ OKxζ1, . . . , ζny ÝÑ B ÝÑ 0

Consider now the following diagram
OKxζ1, . . . , ζny

OKxζ1, . . . , ζmy B

π
h

ψ

where h : OKxζ1, . . . , ζny Ñ OKxζ1, . . . , ζmy makes it into a commutative diagram. Now,
consider ζ 11, . . . , ζ 1m to be elements in OKxζ1, . . . , ζny such that πpζ 1iq “ ψpζiq for any
i “ 1, . . . ,m.

Then, the kernel of ψ is generated by hpJq together with the set tζi ´ hpζ 1iqumi“1. In
conclusion, this kernel is finitely generated.
Remark. Since B is of topologically finite type over OK then it is so over A. In particular,
this implies that there exists an integer t and a surjective map

Axζ1, . . . , ζty� B

which, together with the previous lemma, gives us an isomorphism of A-algebras
Axζ1, . . . , ζty{pg1, . . . , gsq » B for g1, . . . , gs P Axζ1, . . . , ζty

We denote by G the column vector pg1; . . . ; gsq P pAxζ1, . . . , ζtyq
s. Let g be the compo-

sition:
g : Axζ1, . . . , ζty ÝÑ B ÝÑ D

and Ṽ be the map Ṽ : Ãt Ñ B̃ Ñ D̃ where At “ Axζ1, . . . , ζty.
We notice that, in the hypothesis of Theorem 3.2.2.B, the map C̃ � D̃ is surjective;

this implies that C � D is surjective and, therefore, D “ C{I for some ideal I.
Lemma 3.2.4. There exists a map V : At Ñ C lifting Ṽ such that V ” g mod I.

At B D “ C{I

Ãt B̃ D̃

g

Ṽ
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Proof. Observe that we are in the following situation:
D B

C At

g
„„„„„„„„„„�

Find g1 such that
g1”g mod I

D B

C At
g1

g

Where g1 is defined in the following way: consider the vector ζ “ pζ1, . . . , ζtq and set
g1pζq to be any lift of gpζq (i.e., g1pζq ” gpζq mod I); then extend to all At using the
map AÑ C defined in (˚1).

In the same way one define a morphism V 1 : At Ñ C lifting Ṽ . Now observe that
V 1pζq ´ g1pζq P pp` Iqt Ď Ct

because of the commutativity of the diagram:

C

At B D

Ãt B̃ D̃

C̃

g

g1

Ṽ

Ṽ 1

Now it suffices to consider a P pt Ď Ct and b P It Ď Ct such that
V 1pζq ´ g1pζq “ a´ b

Set d “ V 1pζq ´ a “ g1pζq ´ b and clearly d̃ “ Ṽ and d ” g mod I. The desired map
V now is the unique homomorphism At Ñ C such that V pζq “ d.

The homomorphism V we have just found is the first approximation of the lifting we
were looking for. The idea is to consider a sequence of approximations tending to the
desired lift.
Lemma 3.2.5 ([Col3, Lemma A-3]). There exist tˆ s matrix N and sˆ s matrices M and
Q over At such that

Gpζ `NGq “ GTMG`QG

where the entries of Q are in pAt.
We set V0 “ V and we define recursively Vk by

Vk`1pζq “ Vkpζq `NpVkpζqqGpVkpζqq

Since Vk`1pζq P C
s, it determines a unique homomorphism Vk`1 : At Ñ C . Applying

Lemma 3.2.5, we immediately see that Vk`1pζq ´ Vkpζq Ñ 0 and therefore (by the
completeness of Tate algebras), the sequence tVku converges to the desired lifting.
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So far we have proved Theorem 3.2.2.B; Theorem 3.2.2.A follows taking A “ A0pW q,
B “ A0pXq, C “ A0pY q and D “ A0pZq.
Remark. This is enough since, if X is a reduced affinoid, then A0pXq is a Tate OK-
algebra ([Col3, Lemma A-1.5]).

3.3 Frobenius Endomorphisms
Suppose now that S is a scheme over a field F and let σ be an automorphism of F . In
the canonical way, we can consider the scheme Sσ obtained from S with the technique
of base change:

Sσ “ S ˆSpecpF q SpecpF σq S

SpecpF σq SpecpF q

σ

Specpσq
If f is a form on S, we denote by fσ its pullback via σ.

If X is an affinoid over F “ K and σ is an automorphism of K , then we consider
S “ SpecpApXqq

(which is a scheme over K). We define Xσ to be the affinoid characterized by
Sσ “ SpecpApXσ

qq

Next, we consider the case F “ Fp and σ “Frobenius automorphism of F:
σ : Fp ÝÑ Fp

x ÝÑ xp

If S is a scheme over Fp, then the absolute Frobenius morphism on S is φ : S Ñ Sσ

which is the identity on points and the map f Ñ fσ on sections:
φ˚fσ “ fp @f P OSpUq

In general, for any integer n P Zą0, φ : S Ñ Sσ
n is characterized by φ˚fσn “ fp

n .
If S is of finite type over Fp, then it has a finite affine covering tSiu such that

tOSpSiqu are finitely generated Fp-algebras; this implies that there exists n P Zą0 such
that S » Sσ

n . If
ρ : Sσ

n „
ÝÝÝÑ S

is such an isomorphism, we call
ρ ˝ φ : S ÝÑ S

the Frobenius Endomorphism of S.
Finally, suppose that X is a K-affinoid space and σ is a continuous automorphism

of K which restricts to the Frobenius endomorphism of F “ OK{p. Since X̃ is of finite
type over F, X̃ possesses a Frobenius endomorphism and an endomorphism of X lifting
one of those is called Frobenius endomorphism of X .
Corollary 3.3.1. Suppose that X is a reduced affinoid over K with good reduction.
Then:
1. X possesses a Frobenius endomorphism.

2. There is a morphism from X to Xσ lifting the Frobenius morphism X̃ Ñ X̃σ .

3. X » Xσn for some positive integer n.
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Let now X be a reduced affinoid over K with good reduction.
X̃Falg “ X̃ ˆSpecpF q SpecpF algq X̃

SpecpF algq SpecpF q
X̃Falg is a scheme over Falg. If U is a residue class in X , then Ũ is in X̃pFalgq (Falg does
not have finite extensions) and therefore, Ũ is defined over some finite extension of F.
In particular, this implies that there is an integer m P Zą0 such that

φ̃pŨq “ Ũ
Lemma 3.3.2. For each residue class U of X , there exist some m P Zą0 and some ξ P U
such that:

φmpξq “ ξ

The point ξ is called a Teichmüller point.
Sketch of proof. Since U reduces to one point in X̃ , U is isomorphic to the open ball

Bdp0, 1´q “ tpz1, . . . , zdq P K
d
|zi| ă 1 @iu

where d is the dimension of X̃ ([Ber1, Proposition 1.1.1]).
Now we apply Lemma 3.0 in [Dwo] which tells us that φm has a unique fixed point in

Bdp0, 1´q. The proof consists in showing that, given any x P U , the sequence tφmnpxqunis convergent and the limit does not depend on the choice of the point x: increasing n
we can make φmnpxq arbitrarily close to φmnpyq for any other y P U .

Finally the Teichmüller point is defined to be
ξ “ lim

nÑ`8
φmnpxq for any x P U

3.4 Differentials
In this section we give some details about the theory of differentials on rigid spaces.
The main references are [MW, §4], [VdP] and [FvdP, §3.6].

Let A be an affinoid K-algebra and M a finitely generated A-module. A derivation
for A is a K-linear map D : A Ñ M such that Dpabq “ aDpbq ` bDpaq. Theorem 4.1
in [MW] guarantees the existence of a module of differentials ΩA{K with a derivation

d : AÑ ΩA{K

satisfying the following universal property: “if E is another A-module with a derivation
λ : AÑ E, then there exists a unique A-linear differential homomorphisms ΩA{K Ñ E”.

Similarly, if X is an affinoid K-space and A “ ApXq, we have a module of rigid
differentials ΩX{K with a standard derivation map

d : ApXq ÝÑ ΩX{K

We define Ωi
X{K as the i-th exterior power of ΩX{K :

Ωi
X{K “ ΩbiX{K{I

where I is the ideal generated by the objects ωj1 b . . .b ωji where ωjl “ ωjk for some
l ‰ k. The derivation map d extends naturally to a derivation of the complex Ω‚X{K .
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If Y is any rigid space over K , we can construct a natural complex of rigid differ-
entials pΩ‚Y {K , dq on Y gluing together the differential sheaves of the affinoids covering
Y ([FvdP, §4.4]).
Definition. A closed differential on Y is an element ω P H0

pY,Ω‚Y {Kq.
Let X be a connected affinoid K-space with good reduction. Consider the diagonal

∆̃ in X̃ ˆ X̃ .
Remark. D “ red´1∆̃ has the structure of rigid space: since X̃ is an affine scheme over
F, then it is separated and, therefore, ∆̃ is affine. ([Liu, §3.3.1]). Now we can apply
[Ber1, 0.2.2.1].

Denote by ApDq the ring of rigid analytic functions on D and consider two projec-
tions

ρ1, ρ2 : D Ñ X

Proposition 3.4.1 ([Col3, Proposition 1.2]). If ω is a closed differential on X , then

ρ˚1 ω ´ ρ
˚
2 ω P dApDq

Corollary 3.4.2. Suppose that f1, f2 : X 1 Ñ X are two morphisms of reduced connected
affinoid spaces over K with good reduction such that f̃1 “ f̃2 and consider a closed one
form ω on X . Then, the following hold:

1) f˚1 ω ´ f˚2 ω P dApX 1q.

2) If λ is a function on XpCpq which is analytic on each residue class of X and such
that dλ “ ω, then f˚1 λ´ f˚2 λ P ApX 1q.

Proof. Point 1 follows directly from the proposition: if f “ pf1, f2q : X 1 Ñ X ˆX , we
immediately notice that fpX 1q Ď D (the two reductions are equal, i.e., f̃1 “ f̃2)

X 1 D

Xfi

f

ρ1 ρ2

This implies that
f˚1 ω ´ f

˚
2 ω “ f˚

`

ρ˚1 ω ´ ρ
˚
2 ω

˘

Let’s now prove point 2. Consider a function F P ApDq such that dF “ ρ˚1 ω ´ ρ˚2 ωwhose existence is given by Proposition 3.4.1. Since F is now constant on the diagonal
D, we may assume that F “ 0 on D.

If U is a residue disk in X , then ρ˚1 λ ´ ρ˚2 λ is analytic on U ˆ U and vanishes on
∆X U ˆ U . Further,

dpρ˚1 λ´ ρ
˚
2 λq “ ρ˚1 ω ´ ρ

˚
2 ω

This means that F “ ρ˚1 λ´ρ
˚
2 λ on UˆU and, since D is a union of UˆU , we conclude

that
ρ˚1 λ´ ρ

˚
2 λ “ F P ApDq

Now the Corollary follows applying the pullback via f .
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We have now most of the ingredients that we need to construct our theory of inte-
gration:

• Lifting of Frobenius morphisms.
• Teichmüller points.
• Differentials on affinoids.

The last ingredient we have to introduce is a suitable covering of our space X .
Let X be a proper scheme of finite type over OK and X̃ be its special fiber over

F. If Y Ď X̃ is an affine open set, then W “ red´1Y Ď XK has the structure of rigid
space. If X is smooth, then W has good reduction and W̃ “ Y . In this case we call W
a Zariski affinoid open subset of XK .
Definition. If XK is smooth, then a differential of the second kind on XK is an element
ω P ΩXK{KpUq, for some dense open subset U of XK , such that:
(i) dω “ 0.
(ii) There exists a Zariski open covering C of XK such that for every W P C,

ρUUXWpωq P ρ
W
UXWpΩXK{KpWqq ` dOXK pU XWq

where ρ denotes the restriction map.
In other words, the covering we want is such that

ω|W “ ωW ` d pf |Wq ωW P ΩW{Cp , f P OpXKq

Question. How do Zariski open subsets behave under the action of Frobenius endo-
morphisms?

Definition. If X is proper and smooth over OK we say that Frobenius acts properly on
X if, for each Frobenius endomorphism φ of X̃ there exists a polynomial ZpT q P CprT ssuch that
(i) No root of ZpT q in Cp is a root of unity.
(ii) For each Zariski affinoid open W of X such that φW̃ “ W̃ , there exists a lifting

φ : W ÑW of φ|W such that Zpφ˚qω P dApWq for each differential of the second
kind ω on XK regular on W .

Theorem 3.4.3 ([Col3, Theorem 1.4]). If K is discretely valued and X is a smooth
projective scheme over OK , then any Frobenius endomorphism acts properly on X.

3.5 p-adic Integrals
In this section we describe how to effectively integrate differentials of the second kind
on affinoids. The main reference is [Col3, §2].

Let X be a smooth proper connected scheme of finite type over OK and ω a differ-
ential of the second kind on XK ; we know that Frobenius acts properly on X (Theorem
3.4.3).

Now we want to consider D, the collection of Zariski open subsets X in XK such
that

ω|X ´ dgX “ ωX P ΩKpXq

for some gX P KpXq, the function field of X .
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Lemma 3.5.1. D is, in fact, a covering.
Proof. This is straightforward using the fact that ω is of II kind: by the definition, there
exists a Zariski open covering C of XK such that for every X P C

ρXKX pωq P ρXXpΩXK{KpXqq ` dOXK pXq

and therefore C Ď D and the latter is a covering.
Now we consider pωq

8
the set of poles of ω and we write

X1K “ XK ´ pωq8

Let φ be a power of the Frobenius endomorphism of X̃ and consider D1 Ď D consisting
of those X such that

φX̃ “ X̃

Lemma 3.5.2. D1 is a covering.
Proof. X is smooth, then every Zariski open affinoid X of XK have good reduction and
X̃ is affine. This, in particular, means that we can cover X̃ by affines X̃ . But now we
know that XK is quasi compact since X is of finite type (Remarks at the end of Section
2.7 based on [Ber1, 0.2.4]). Thus, we can extract from D a finite subcovering D1 which
implies that D̃1 is also finite. Now X̃ is covered by a finite number of affine subspaces.
Hence, we can choose a sufficiently large power of φ fixing all the X̃ ’s. In conclusion,
modulo replacing φ with one of its power, D1 is a covering.

Choose now a polynomial ZpT q P CprT s associated to X and to φ as in the definition
of proper action of Frobenius.

If X P D1, let φ̄ “ φ̄X be a lifting of the restriction φ|X̃ to X̃ . It follows that
Zpφ̄˚qωX P dApXq

Theorem 3.5.3 (Coleman). With the notation as above, there exists a locally analytic
function fω on X1KpCpq unique up to additive constant such that
I) dfω “ ω.

II) @X P D1 there exists gX P KpXq such that pfω ´ gXq|X extends to a locally analytic
function on X and

Zpφ̄˚Xqpfω ´ gXq P ApXq

Further, fω is independent of all the choices (the covering D1, the polynomial Z and
the power of the Frobenius endomorphism of X̃ fixing the elements of D1).

For ω and fω as above and for two points P,Q P XKpCpq, we define
ż Q

P

ω “ fωpQq ´ fωpP q

the integral of ω from P to Q.

Proof of Theorem 3.5.3
The proof of the Theorem can be articulated into 4 steps: we’ll first show that the
conditions dfX “ ωX and Zpφ˚XqpfXq P ApXq determine a unique function fX which is
locally analytic on X . Then, we will show that fX ` gX and fX 1 ` gX 1 agree on the
intersection X XX 1 and, finally, we will see how to glue together all these fX ` gX .
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Step I: Determining pfω ´ gXq|X

In this first step we focus our attention on one Zariski open affinoid.
Theorem 3.5.4. Let X be a smooth connected affinoid over K with good reduction X̃ .
Let ω be a closed one form on X and φ be a Frobenius endomorphism of X . Suppose
ZpT q is a polynomial over Cp such that

Zpφ˚qω P dApXq

and such that no root of Z is a root of unity. Then, there exists a unique (up to additive
constant) locally analytic function fω on XpCpq such that
(a) dfω “ ω.

(b) Zpφ˚qfω P ApXq.
Proof. Modulo multiplying Z by a constant, we may assume

ZpT q “ T n ` an´1T
n´1

` . . .` a0 P Cp

hence,
Zpφ˚qphq “

ÿ

k

akph ˝ φ
k
q

Let Ω “

´

ω, φ˚ω, . . . , pφn´1q
˚
¯

regarded as a column vector and consider the matrix
M over Cp defined as the companion matrix of Z:

M “

¨

˚

˚

˚

˚

˚

˚

˚

˝

0 1 0 . . . 0 0
0 0 1 . . . 0 0
0 0 0 . . . 0 0... ... ... . . . ... ...
0 0 0 . . . 0 1
´a0 ´a1 ´a2 . . . ´an´2 ´an´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

Then φ˚Ω ”MΩ mod pdApXqqn - by hypothesis Zpφ˚qω P dApXq.
(Case degP “ 1). In the special case ZpT q “ T ´ a, we have Ω “ ω and M “ a which
shows that pφ˚ ´ aqω “ φ˚ω ´ aω P dApXq.
(Case degP “ 2). In case ZpT q “ T 2 ` aT ` b, we have

Ω “

ˆ

ω
φ˚ω

˙

M “

ˆ

0 1
´a ´b

˙

Thus,
MΩ “

ˆ

φ˚ω
´aω ´ bω

˙

and φ˚Ω “

ˆ

φ˚ω

pφ˚q2 ω

˙

Therefore, we have equality on the first component while on the second component we
use the definition of Z .

Hence, Theorem 3.5.4 is equivalent to:
Claim. There exists a locally analytic function f : XpCpq Ñ Cn

p unique up to additive
constant such that
(a’) dF “ Ω.

(b’) φ˚F “MF mod pApXqqn

Indeed, F “ pfω, fω ˝ φ, . . . , fω ˝ φn´1q.

47



III. P-ADIC ABELIAN INTEGRALS §3.5. P -ADIC INTEGRALS

(Uniqueness) Suppose we have two solutions; their difference would be a function
G “ pg1, . . . , gnq

locally analytic satisfying dG “ 0 and φ˚G ”MG mod pApXqqn. Observe that
the former implies that G is locally constant and therefore, φ˚G´MG is locally
constant too. Since X is connected, we conclude that

φ˚G´MG “ C some C P Cp

We would like to conclude that G “ p1´Mq´1C. By hypothesis, we know that 1
is not a root of Z; then, 1´M P GLnpCpq and so

`

φ˚
˘k
G´MkG “

`

1´Mk
˘

p1´Mq´1C (3.1)
Now let U be a residue disk in X and ξU be its Teichmüller point with respect to
φ (Lemma 3.3.2):

φmpξUq “ ξU

Now fix k “ m and evaluate equation (3.1) at ξU :
φ˚GpξUq ´M

kGpξUq
“

GpξU q´MkGpξU q

“
`

1´Mk
˘

p1´Mq´1C

which yields
`

1´Mk
˘

GpξUq “
`

1´Mk
˘

p1´Mq´1C ùñ GpξUq “ p1´Mq
´1C (3.2)

Observe that, in fact, also 1´Mk P GLnpCpq.
Since G is locally constant and, for every x P U , φmnpxq ÝÝÝÝÑ

nÑ`8
ξU , we can find

an integer kx such that
Gpφmkxpxqq “ GpξUq

Using again equation (3.1), we get
`

1´Mmkx
˘

p1´Mq´1C “
`

φ˚
˘mkx

Gpxq ´MmkxGpxq “

“ GpξUq ´M
mkxGpxq

(3.2)
“ p1´Mq´1C´MmkxGpxq

Thus,
MmkxGpxq “Mmkxp1´Mq´1C ùñ Mmkx

`

Gpxq ´ p1´Mq´1C
˘

“ 0

Regarding Mmkx as a linear map on Cn
p , we see that

Gpxq ´ p1´Mq´1C P kerMmkx

Remark. Cp is algebraically closed and, therefore, φm : U Ñ U is surjective and,
for any positive integer r, there exists yr such that φmrpyrq “ x.
Using this remark we re-read equation (3.1):

Gpxq ´ p1´Mq´1C “Mmr
`

Gpyrqp1´Mq
´1C

˘

which means that Gpxq ´ p1´Mq´1C P ImpMmrq. We conclude that
Gpxq ´ p1´Mq´1C P kerpMmkxq X

˜

č

rě0

¸

ImpMmr
q “ t0u

and therefore Gpxq “ p1´Mq´1C as we wanted. In particular, G is constant and,
therefore, F is unique.
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(Existence) Suppose
φΩ “MΩ` dh some h P ApXqn

Again U will be a residue class of X and ξU its Teichmüller point with respect to
φ. Let m be the minimum integer such that φmpξUq “ ξU .
Since Ω is closed and U is an open ball , there exists a unique function FU analytic
on U such that dFU “ Ω|U and (we fix this value at ξU )

FUpξUq “ p1´M
m
q
´1

m´1
ÿ

i“0

M ih
`

φm´pi`1q
pξUq

˘

Let F be the unique locally analytic function defined by F |U “ FU (recall that
the residue disks are disjoint). Clearly F satisfies dF “ Ω; further,
`

φ˚F
˘

pξUq “ pF ˝ φq pξUq “ p1´M
m
q
´1

m´1
ÿ

i“0

M ih
`

φm´ipξUq
˘

“

“Mp1´Mm
q
´1

m´2
ÿ

j“´1

M jh
`

φm´pj`1q
pξUq

˘

“

“Mp1´Mm
q
´1

m´1
ÿ

j“0

M jh
`

φm´pj`1q
pξUq

˘

´Mp1´Mm
q
´1Mm´1h

`

φm´mpξUq
˘

`

`Mp1´Mm
q
´1M´1h pφmpξUqq “

“MF pξUq ` p1´M
m
q
´1h pφmpξUqq ´M

m
p1´Mm

q
´1h pξUq “

m´1
ÿ

j“0

“MF pξUq ` p1´M
m
q
´1
ph pφmpξUqq ´M

mhpξUqq “
m´1
ÿ

j“0

“MF pξUq ` p1´M
m
q
´1
phpξUq ´M

mhpξUqq “
m´1
ÿ

j“0

“MF pξUq ´ p1´M
m
q
´1
p1´Mm

qhpξUq “MF pξUq ´ hpξUq

This means that
`

φ˚F ´MF
˘

pξUq “ hpξUq

and
d
`

φ˚F ´MF
˘

“ Ω˚
´MΩ “ dh on U

In conclusion, φ˚F ´MF “ h on each residue disk U Ď X and, hence, on all X .
Corollary 3.5.5. The function fω is analytic on each residue class of X .
This concludes the first step of the proof of Theorem 3.5.3.

Step II: Independence of fω of all choices
Lemma 3.5.6. The function fω depends modulo constants only on ω and not on the
choice of P .
Proof. Consider the vector space

Vφ “ x
`

φ˚
˘n
ω mod dApXqyně0

Because of the hypothesis Zpφ˚ωq P dApXq of Theorem 3.5.4, we know that Vφ is finite
dimensional.
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If Pφ is the minimal polynomial of φ acting on Vφ, then PφpT q | ZpT q which implies
that if f 1ω “ ω and Pφpφ˚qf 1ω P ApXq, then Zpφ˚qf 1ω P ApXq and so fω ´ f 1ω is constant
by the uniqueness of fω .
Lemma 3.5.7. With the notation introduced before, if ω1 is another closed one form on
X such that Zpφ˚qω1 P dApXq, then

i. fω`ω1 “ fω ` fω1 ` C for C P Cp.

ii. If ω is exact, fω P ApXq.

Lemma 3.5.8 ([Col3, Corollary 2.1.d]). The function fω is independent (modulo constants)
of the choice of φ.

Sketch of Proof. It suffices to show that, replacing φ by φt, we do not change fω . It can
be verified that

PφtpT
t
q “

ź

ζt“1

PφpζT q

Thus, the fact that Pφpφ˚qpfωq P ApXq implies that Pφtppφtq˚qfpωq and now the result
follows from the uniqueness of fω .
Lemma 3.5.9 ([Col3, Corollary 2.1.e]). Let σ be a continuous automorphism of Cp and
ωσ the pullback of ω to Xσ . Let fσω be the function on XσpCpq defined by

fσω pxq “ σfωpσ
´1
pxqq

then

(a) ωσ satisfies the hypothesis of Theorem 3.5.4 on Xσ .

(b) If fωσ is a solution of Theorem 3.5.4, then fσω ´ fωσ is constant. In particular, if σ
fixes K , then fσω ´ fω is constant.

Step III: Comparing functions on X XX 1

So far we have focused on one affinoid. Let’s enlarge the picture recovering the notation
of 3.5.3. In the previous steps we have seen that on each X P D1 there exists a locally
analytic function fX unique up to additive constant such that
(I) dfX “ ωX “ ω|X ´ dgX

(II) Zpφ˚qfX P ApXq
Now we set hX “ fX ` gX ; this is a function on XzpX X pωq

8
q.

Lemma 3.5.10. hX is independent of all the choices of g and f up to additive constants.

Proof. Take g1X P KpXq such that ω|X ´ dg1X “ ω1X P ΩX{K , then
ω1X ´ ωX “ dgX ´ dg

1
X “ dpgx ´ g

1
Xq ùñ gX ´ g

1
X P ApXq

Now choose f 1X to be a solution of df 1X “ ω1X and Zpφ
˚
qf 1X P ApXq (a solution for

Theorem 3.5.4), then
f 1X ´ fX “ gX ´ g

1
X

modulo constants (uniqueness applied to ωX ´ ω1X ). Thus,
fX ` gX “ f 1X ` g

1
X ` C

and this concludes the proof.
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Step IV: Gluing the integrals
We claim that hX´hX 1 is constant on XXX 1 for X,X 1 P D1. First note that XXX 1 P D;
hence, it suffices to prove the claim in case X 1 Ď X . In this case we can take gX “ gX 1 .Thus, ωX 1 is the restriction of ωX to X 1 and if we restrict fωX to X 1 we get a solution
to Theorem 3.5.4 for X 1. In conclusion hX 1 “ hX |X 1 (modulo constants).

This means that, in order to glue the integrals, we only have to adjust the constants
so that hX and hX 1 agree on the intersection.

Finally, as mentioned before, we define
ż Q

P

ω
def
:“ fωpQq ´ fωpP q

This concludes the proof of the main Theorem.

Properties of the Integral
Proposition 3.5.11. Suppose that ω and ω1 are two differentials of the second kind on
XK . Then,

(a) Additivity on forms: λ1

ż Q

P

ω1 ` λ2

ż Q

P

ω2 “

ż Q

P

pλ1ω1 ` λ2ω2q.

(b) Fundamental Theorem of Calculus: if dg “ ω for a meromorphic function g P CppXq,

then,
ż Q

P

ω “ gpQq ´ gpP q.

(c) Change of variables: if τ : X1 Ñ X is a morphism of smooth proper schemes over
OK on which Frobenius acts properly, then,

ż Q

P

τ˚pωq “

ż τpQq

τpP q

ω

if τpP q, τpQq R pωq
8

.

In his article [Col3], Coleman proved that the change of variable formula holds even
if we soften and relax some hypothesis. In order to be able to state this result, we need
a small digression on Albanese variety.

Given a variety X which is smooth over K , one can associate to it, in a functorial
way, its Albanese Variety. As a reference one can look at [Ser1], [Lan1, §II.3] or [Colm,
§I.5].

In general, the Albanese variety associated to X is a pair pAlbpXq, fq consisting of
an abelian variety AlbpXq and a natural map

f : X ÝÑ AlbpXq
such that:
(1) There exists a non-negative integer n P Zě0 such that the map

F : X ˆX ˆ . . .ˆX
n-times

ÝÑ AlbpXq
equal to the sum of f with itself n-times, is generically surjective.

(2) For every rational map g : X Ñ Y with Y an abelian variety, there exists a
homomorphism g˚ : AÑ B and a constant C P Y such that g “ g˚f ` C.
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Example. If X is proper and smooth over C, then
AlbpXq » H1dRpXq˚H1 pXpCq,Zq

Observe that any point a P XpKq gives rise to a morphism
fa : X ÝÑ AlbpXq such that fapaq “ 0

A morphism of this type is called an Albanese morphism.
Proposition 3.5.12 ([Colm, Proposition I.5.3]). If X is proper, then an Albanese morphism
fa induces an isomorphism

H1
dRpAlbpXqq » H1

dRpXq

Now we can re-state the Change of variables property:
Theorem 3.5.13 (Changes of variables). Suppose that X and X1 are two smooth and
proper schemes over OK of finite type on which Frobenius acts properly. Consider a
rational map

f : X1K ÝÑ XK

and let ω be a differential of the second kind on XK . Then
ż Q

P

f˚ω “

ż fpQq

fpP q

ω

for P,Q P X1KpCpq in the domain of regularity of f such that fpP q, fpQq R pωq
8

.

Proof. Consider the following diagram:
X1K XK

X1 X

AlbpX1q AlbpXq

f

where the two maps X1 Ñ AlbpX1q and X Ñ AlbpXq are Albanese morphisms and the
bottom arrow is the morphism induced functorially by f .
Recall. Observe that AlbpXq and AlbpX1q are the models of AlbpXKq and AlbpX1Kq.

By Proposition 3.5.12, we know that
H1dRpAlbpXKqq » H1dRpXKq

and this implies that any one form of II kind on XK comes (modulo an exact differential)
from a one form of II kind on AlbpXKq. Now the Theorem follows from Proposition
3.5.11

There is an important Corollary to this Theorem:
Corollary 3.5.14. The integral

şQ

P
ω does not depend on the model X of XK .

For a detailed discussion about models, one can refer to [BLR].
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CHAPTER 4 p-adic Integrals on Curves

The general theory of integration has been developed in the previous chapter following
[Col3]. Now we want to specialize our approach to curves; in particular to hyperelliptic
curves.

Hystorically, Coleman did the inverse road developing first a theory of integration
on P1 in [Col1] and then constructing the theory in higher dimensions.

The reason why we postponed the chapter on curves is twofold:
• We would like to use it as an example of the abstract theory developed before.
• Secondly, we want to approach the problem from a different point of view intro-

ducing in the picture some concrete computations.
In recent times (around 2007´2011), Jennifer S. Balakrishnan, Robert W. Bradshaw and
Kiran S. Kedlaya have constructed explicit algorithms thanks to which it is possible to
do some very concrete computations using Coleman’s integrals. The motivation of their
work was the possibility of exploring the various application of this theory.

In this chapter we want to present these algorithmic methods; we will mainly follow
[Col1] for the first three sections while [Bal], [BaT] and [BBK] for the second part. We
also want to mention a video of a seminar given by K.S. Kedlaya and R.W. Bradshaw
at Clay Institute in 2007: [KB].

4.1 Preliminary Definitions
In this section we give some introductory definitions following [Col1].

Let’s consider Cp, the completed algebraic closure of Qp. We will denote by O its
ring of integers and by P the maximal ideal of O.
Definition. An open affinoid subspace of P1

Cp is a set of the form
X “ tz P P1

Cp |fpzq| ď 1, f P Su

where S is a finite subset of RatpCpq, the set of rational functions over Cp, containing
at least one non-constant function.

One can refer to [FvdP, Chapter 2] for a discussion about P1 over non-archimedean
fields.

We define ApXq to be the set of analytic functions over X ; this is the completion
of the set of rational functions which are regular over X with respect to the supremum
norm.

For simplicity, we will denote
Bra, rs “ tz P A1

|z ´ a| ď ru B1
“ Br0, 1s
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Bpa, rq “ tz P A1
|z ´ a| ň ru

Ara, r, Rs “ tz P A1 r ď |z ´ a| ď Ru

Definition. A wide open set is a subset of P1 of the form
U “ tz P P1

|fpzq| ă ef , f P Su

where, again, S is a finite set of rational functions over Cp containing at least one
non-constant function and ef P t1,8u.
Example. The open balls Bpa, rq, with a P A1pCpq, are wide open subsets.

If X Ď P1 is an affinoid and U is a wide open containing X , we say that U is a
wide open neighborhood of X .
Notation. If V Ď P1 is an open subset, we write

ΩpV q “ ApV qdz and ΩLpV q “ LpV q
locally analyticfunctions on V

dz

H1
pV q “ ΩpV q{dApV q

where d : ApV q Ñ ΩpV q is the canonical derivation.
It is interesting to notice that there exist canonical derivations making the following

into a commutative diagram:
LpV q ΩLpV q

ApV q ΩpV q

d

d

Now, if V is an annulus about a P A1, it can be proved ([FvdP, §2.2]) that every
f P ApV q admits a unique expression in power series around a.

For ω P ΩpV q we write
ω “

ÿ

nPZ

αnpz ´ aq
ndz

and we define ([FvdP, §2.3]) the residue of ω at a as
Resaω “ α´1

Lemma 4.1.1. ω P dApV q ðñ Resa “ 0

Proof. (ñ) Suppose
fpzq “

ÿ

něn0

αnpz ´ aq
n

Thus,
df „„„„„�

has expansion ÿ

něn0

nαnpz ´ aq
n´1dz

and, therefore, Resadf “ 0 ¨ α´1 “ 0.
(ð) If ω has residue 0, then we can integrate term by term obtaining a function f

such that df “ ω. It can be proved that the convergence of the expansion of ω is
inherited by the expansion of f .
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4.2 The Logarithm
Definition. A branch of the Logarithm is a locally analytic function

l : Cˆp ÝÑ C`p
such that

d

dz
lp1q “ 1

Lemma 4.2.1 ([Col1, Theorem 2.1]). lpzq is analytic on Bpx, |x|q for any x P Cp. Further,

lpxq “ ´
`8
ÿ

n“0

p1´ xqn

n
in tx P Cp | |x´ 1| ă 1u

Lemma 4.2.2 ([Col1, Theorem 2.2]). Let V be an annulus about a, and suppose that
g P ApV qˆ. If n P Cp is defined by

n “ Resa
dg

g

then n P Z and g can be written as g “ cpz ´ aqnp1` hq, where c P Cp, h P ApV q, and
|hpzq| ă 1 for all z P V .

For an open subset V Ď P1, we can fix a branch of the logarithm Logpzq. We define
ALogpV q “ ApV q

“Logpfq f P ApV qˆ
‰

Lemma 4.2.2 has an important corollary:
Corollary 4.2.3. If V is an annulus about a, then

ALogpV q “ ApV q rLogpz ´ aqs

The importance of working on wide open annulus is given by the following “unique-
ness principle”.
Proposition 4.2.4. Let V be a wide open annulus, and f P ALogpV q. If f vanishes on a
non-empty open subset of V , then f vanishes identically on V .

In particular, the previous proposition enables us to compute the cohomology of a
wide open annulus: we denote by HiLogpV q the i-th cohomology group of the complex

0 ÝÑ ALogpV q d
ÝÝÑ Ω1LogpV q ÝÑ 0

Lemma 4.2.5. If V is a wide open annulus, then
(i) H0

LogpV q “ Cp, i.e., if f, f 1 P ALogpV q such that df “ df 1, then f “ f 1 ` c, c P Cp.

(ii) H1
LogpV q “ 0, i.e., @ω P Ω1

LogpV q, there exists f P ALog such that df “ ω.
The conclusion of this brief discussion is that there exists a theory of integration on

wide open annulus, modulo admitting the use of Logarithms:
Definition. If Apa, r, Rq “ tz P A1 r ă |x| ă Ru is an open annulus (or disk if r “ 0),
then for P,Q P Apa, r, Rq, we define

ż Q

P

ÿ

nPZ

cnt
ndt “ c´1l

ˆ

Q

P

˙

`
ÿ

nPZzt´1u

cn
n` 1

`

Qn`1
´ P n`1

˘

Observe that this integral is taken over a wide open annulus as the denominator
n ` 1 would affect the convergence on the boundary if the domain of integration was
closed.
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4.3 Curves with Good Reduction
Definition. A curve over O is a smooth proper connected scheme over O of relative
dimension 1.

We keep the same notation adopted in Chapter 3. If X is a curve over O, X̃ will be
the reduction of X over O{P while XCp will denote the generic fiber of X .

Again we consider the canonical reduction map red : XCp ÝÑ X̃

Recall. The inverse image of a point of X̃ is a unitary open disk in XCp ([Bre, 1.2.1.2]):
this follows from [Ber1, Proposition 1.1.1] taking y “ py1, y2q P X̃pFq; then

tyu “ V pζ1 ´ y1, ζ2 ´ y2q “ V pf1, f2q

and red´1V pζ1 ´ y1, ζ2 ´ y2q “ tx P XCp |fipxq| ă 1u.
Definition. We call such an open disk a residue disk of X .

XCp

X̃

red

red−1(P1)

red−1(P2)

red−1(P3)

red−1(P4)

P1
P2

P4

P3

XCp

X̃

red−1

Figure 4.1: Reduction of a curve and residue disks
Definition. Let X be a curve over O. A wide open subspace of X is a rigid analytic
subspace of XCp that is the complement of the union of a finite collection of disjoint
closed disks of radius r ă 1.

r1

1

r2

1

r3

1

r4

1

Figure 4.2: Wide open subspace
Remark. Wide open subsets are obtained cutting out certain closed disks and keeping
everything else.
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This will allow us to consider differential forms which are not holomorphic on all X
but just on a wide open subset U (in a certain sense we are eliminating the problematic
points pωq

8
).

In the previous chapter, we have seen the properties of the Coleman integral. Let’s
us re-state the result in the case of curves using the terminology of [BBK]:
Theorem 4.3.1. For every curve X over O and every wide open subspace V of XCp ,
there exists a unique map

µV : Div0
pV q ˆ Ω1

V {Cp ÝÑ Cp

such that:

(Linearity) The map µ0 is linear on Div0
pV q (linearity on points) and Cp-linear on

Ω1
V {Cp (linearity on forms).

(Compatibility) For any residue disk D of X and any isomorphism φ : V XD Ñ Apr, Rq,
the restriction of µV to Div0pV XDq ˆΩ1

V {Cp is compatible with the definition in
Section 4.2 of integral on an open wide annulus.

(Change of variables) Let X 1 be another curve over O, V 1 be a wide open subspace of
X 1, and let φ : V Ñ V 1 be any morphism of rigid spaces relative to a continuous
automorphism of Cp. Then

µV 1 pφp¨q, ¨ q “ µV
`

¨ , φ˚p¨q
˘

(Fundamental Theorem of Calculus) If f P ApV q and
ř

i γiPi P Div0
pV q, then

µV

˜

ÿ

i

γiPi , df

¸

“
ÿ

i

γifpPiq

In the following sections we will try to explain the explicit method of Kedlaya and
Balakrishnan for computing the Coleman’s integrals.

4.4 Hyperelliptic Curves
We start by introducing the principal ingredient of the algorithm: hyperelliptic curves.

Let K be a field of characteristic ‰ 2.
Definition. An hyperelliptic curve is a smooth projective curve given by an equation of
the form

C : y2
“ F pxq

where F P Krxs is a monic polynomial of degree 2g`1 such that F̄ pxq has no repeated
roots.
Remark. This gives us a curve of genus g with good reduction.

We denote by
ι : px, yq ÝÑ px,´yq

the hyperelliptic involution.
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Definition. A Weierstrass point P is a Kalg-rational point fixed by ι. We denote
Z “ tP P C

`

Kalg˘ ιpP q “ P u

the set of Weierstrass points.
Remark. Here is where we are explicitly making holomorphic functions on wide opens.

Now let K be an unramified extension of Qp and C{K be an hyperelliptic curve
with good reduction. Let C 1 be the affine curve obtained from C by eliminating the
Weierstrass points. The coordinate ring of C 1 is given by

A “
Krx, y, zs

py2 ´ F pxq, yz ´ 1q
“
Krx, y, y´1s

py2 ´ F pxqq

Let’s try to compute the de Rham cohomology of C 1; we have to consider the complex
0 ÝÑ A

d
ÝÝÑ ΩA{K

d
ÝÝÑ

ľ2
ΩA{K

d
ÝÝÑ . . .

d
ÝÝÑ

ľdim C1
ΩA{K ÝÑ 0

where ΩA{K is the module of Kähler differentials, i.e., the A-module generated by the
symbols dr, for r P A, modulo the relations dc “ 0 for c P K and dpabq “ a ¨ db` b ¨ da.

Clearly H0dRpC 1q “ K and HidRpC 1q “ 0 for i ą 1. To determine H1dRpC 1q it is necessary
to use the relations defining C 1 ([Hrt, Example 3.1.2]):

H1dRpC 1q “
C

xi
dx

y
, xi

dx

y2

G

i“0,...,2g´1

The problem is that the underlying coordinate ring does not admit a proper Frobenius
lifting:
Example. Suppose that X̄ is the affine space over Fp defined by the equation xy “ 1.
Its coordinate ring is Ā “ Fprx, x´1s. If one wants to construct the de Rham cohomology
immediately bump into the problem of lifting forms xp´1dx (the cohomology group being
independent on the choice of the lifting). For instance, we can lift Ā to Zp in two ways:

A1 “ Zprx, x´1
s and A2 “ Zprx, px` px2

q
´1
s

and the cohomology groups are not isomorphic:

H1dRpA1q “

C

dx

x

G

and H1dRpA2q “

C

dx

x
,

dx

1` px

G

Therefore, the de Rham cohomology is not the suitable tool to study integrals on
hyperelliptic curves.

4.5 Monsky-Washnitzer Cohomology
As we have seen, computing the de Rham cohomology of a rigid space might be somehow
problematic

In general, if X is a smooth variety over K and A is its coordinate ring, one
can consider A8, the p-adic completion of A (where p Ď O is the maximal ideal).
Unfortunately, the price we pay is that now the de Rham cohomology of A8 is bigger
than the one of A.
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To solve this problem, in 1968, the two American mathematicians P. Monsky and
G. Washnitzer introduced a subring of A8 consisting of power series converging fast
enough that their integrals also converge. This subject has been first developed in the
60’s by Monsky and Washnitzer [MW] motivated by the work of Dwork, and then refined
in the 80’s by van der Put [VdP].
Definition. If A is an OK-algebra, its p-adic completion is

A8 “ lim
ÐÝ
i

A

piA

The weak completion of A is the subset A: of A8 consisting of elements having repre-
sentation

`8
ÿ

i“0

Pipζ1, . . . , ζnq

where ζ1, . . . , ζn P A, Pi P pi rζ1, . . . , ζns and there exists a constant C such that
degPi ď Cpi` 1q @i

If one consider
T :n “

#

ÿ

ν

aνζ
ν aν P OK , Dr ą 1 such that lim

|ν|Ñ`8
|aν |r

ν
“ 0

+

the algebra of overconvergent power series, then a weakly complete finitely generated
OK-algebra, is the homomorphic image of T :n for some n.
Remark. T :n is a set of power series converging on a space which is slightly bigger than
a unitary ball.
Theorem 4.5.1 ([VdP, Proposition 2.2]). T :n satisfies Weierstrass Preparation and Divi-
sion Theorem.

Theorem 4.5.2 ([MW, Theorem 2.1]). Any weakly complete finitely generated algebra
is Nöetherian.

Now let A: “ T :n{I be a weakly complete finitely generated algebra. We define the
module of differentials as

Ω1
pA:q “

A:dζ1 ` . . .` A
:dζn

Submodule generated by
!

Bfi
Bζ1

dζ1`...`
Bfi
Bζn

dζn i“1,...,m
)

where pf1, . . . , fmq “ I.
This is the universal finite module of differentials of A: over OK ([VdP, §2]). As

usual, we define
Ωi
pA:q “

ľi
Ω1
pA:q

the i-the exterior power of Ω1pA:q and we denote with di the exterior differentiation:
dpxdy1 ^ . . .^ dyiq “ dx^ dy1 ^ . . .^ dyi

We obtain the de Rham complex
0 ÝÑ Ω0

pA:q
d0
ÝÝÑ Ω1

pA:q
d1
ÝÝÑ Ω2

pA:q
d2
ÝÝÑ . . .
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Notation. Let A: be a weakly complete finitely generated algebra, then we set
Ā “ A:{πA:

where π is a uniformizer of p.
Remark. Observe that T :n{πT :n is isomorphic to the polynomial algebra F rζ1, . . . , ζns.

We deduce from this that, if A: is a weakly complete finitely generated algebra (i.e.,
there exists a surjective morphism T :n � A:), then Ā is a finitely generated F-algebra.

On the other hand, we also know [Bes, §1.3.2] that any finitely generated smooth
F-algebra can be obtained as the reduction Ā of a suitable A:.

In particular, the weak completion depends, up to isomorphisms, only on Ā.
Definition. The Monsky-Washnitzer cohomology of Ā is the cohomology of the de Rham
complex Ω‚pA:q bK:

HiMWpĀ,Kq “ HidRpΩ‚pA:q bKq

Remark. HiMWpĀ,Kq is a finite dimensional K-vector space [Ber2, §3].
Question. The reason why we introduced the Monsky-Washnitzer cohomology was to
overcome the lifting problems arising when computing the de Rham cohomology in
characteristic p. Do we have, in fact, solved the issue?

Lemma 4.5.3 ([VdP, Theorem 2.4.4]). With the notation as above, the following hold:

(a) Any two lifts are isomorphic.

(b) Any morphism f̄ : ĀÑ B̄ can be lifted to a morphism f : : A: Ñ B:.

(c) Any two maps f :, g: : A: Ñ B: with the same reduction induce homotopic maps
f :˚, g

:
˚ : Ω‚pA:q Ñ Ω‚pB:q.

Let’s go back to hyperelliptic curves. Consider again C : y2 “ F pxq and C 1 “ CzZ .
If

A “
Krx, y, y´1s

py2 ´ F pxqq

is the coordinate ring of C 1, then its Monsky-Washnitzer weak completion is

A: “

#

`8
ÿ

n“´8

Bnpxq

yn
Bn P Krxs, degBn ď 2g

+

with the further condition that νppBnpxqq grows faster than some linear function of |n|
as |n| Ñ ˘8.
Remark. We are “allowing singularities” near the Weierstrass points but, with the ad-
ditional condition, we force the elements of A: to be holomorphic not only out of the
Weierstrass residue disks but also in some annulus around Weierstrass points.

Now we consider the derivation
d : A: ÝÑ Ω

and we observe that
dy “ F 1pxq

dx

2y
ùñ Ω “ A:

dx

2y
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which means
d : A: ÝÝÝÝÝÝÑ A:

dx

2y
ÿ

i,j

ai,j
xi

yj
ÝÝÝÝÝÝÑ

ÿ

i,j

ai,jd

ˆ

xi

yj

˙

“
ÿ

i,j

ai,j
ixi´1yjdx´ jxiyj´1dy

y2j
“

“
ÿ

i,j

ai,j
2ixi´1yj ´ 2jxiyj´1 F 1

2y

y2j´1
¨
dx

2y
“

“
ÿ

i,j

ai,j

ˆ

2ixi´1

yj´1
´
jxiF 1

yj`1

˙

¨
dx

2y

We denote
H0MWpC 1q “ ker d “ th P A: dh “ 0u

H1MWpC 1q “ coker d “ A:
dx

y

N

dA:

Remark. The hyperelliptic involution induces a map ι˚ on cohomology decomposing
H1MWpC 1q into two eigenspaces on which it acts respectively as I and ´I :

H1MWpC 1q` “ tEven 1-formsu , H1MWpC 1q´ “ tOdd 1-formsu
Lemma 4.5.4 ([Bal, Lemma 2.2.2]). The two eigenspaces have the following description:

H1
MWpC 1q` has basis

"

xi
dx

y2

*2g

i“0

and H1
MWpC 1q´ has basis

"

xi
dx

2y

*2g´1

i“0

Remark. We notice that even 1-forms can be written in terms of x alone; thus, they can
be integrated directly as in the definition in Section 4.2. Consequently, we will focus
our attention on odd 1-forms.

Now, any differential ω P Ω can be written uniquely as
ω “ df ` γ0ω0 ` γ1ω1 ` . . .` γ2g´1ω2g´1

where f P A:, γi P K and the ωi’s are the elements of the basis:
ωi “ xi

dx

2y

Remark. The process of writing ω in terms of elements of the basis can be made algo-
rithmic thanks to Kedlaya [Bal, §2.2.2]: in Section 4.8 we will give an intuition of how
this method works (Algorithm 6).

4.6 Lifting of Frobenius
We recall thatK is an unramified extension of Qp. Thus, we have a unique automorphism
φK lifting the Frobenius automorphism φ : xÑ xp on its residue field F. Now we extend
this automorphism to A:. Clearly φpxq “ xp; then,
φpyq “ pφKpF qpx

p
qq

1{2
“ pφKpF qpx

p
q ´ F pxqp ` F pxqpq1{2 “

“ F pxqp{2
ˆ

1`
φKpF qpx

pq ´ F pxqp

F pxqp

˙1{2

“ yp
ˆ

1`
φKpF qpx

pq ´ F pxqp

F pxqp

˙1{2

“

“ yp
8
ÿ

i“0

ˆ

1{2

i

˙

pφKpF qpx
pq ´ F pxqpqi

y2ip
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φpzq “ φpy´1
q “ y´p

8
ÿ

i“0

ˆ

´1{2

i

˙

pφKpF qpx
pq ´ F pxqpqi

y2ip
“

“ zp
8
ÿ

i“0

ˆ

´1{2

i

˙

pφKpF qpx
p
q ´ F pxqpqi z2ip

Let’s us compute the action of Frobenius on the basis of H1MWpC 1q´:
φ˚

ˆ

xi
dx

2y

˙

“ xipdpxpqφ

ˆ

1

2y

˙

“ xipdpxpq
1

2φpyq
“

“ pxip`p´1

˜

2yp
`8
ÿ

k“0

ˆ

´1{2

i

˙

φKpF qpx
pq ´ F pxqp

y2pk

¸´1

dx

Note that we need y´1 to be an element of A:: this is why we work on C 1 instead of C.
At this point we must make an important consideration about the effectiveness of the

Kedlaya algorithm: as all the elements in A: are infinite series, a practical computation
will be made with a suitable approximation. Hence, one should keep track of the
precision used.

4.7 Local Parameters
Before being able to integrate, we need to compute a parametrization of the path be-
tween the two endpoints of integration. In this section we describe the algorithms
needed to compute local parameters in residue disks. A good discussion about this can
be found in [Bal, §2.1] or [BaT, §3.1].

Algorithm 1. Local coordinate at a point in a non-Weierstrass residue disk
Input: A point P “ pxP , yP q P CpKq in a non-Weierstrass disk and an integer n.
Output: A parametrization pxptq, yptqq at P in terms of a local coordinate.

1. We set xptq “ t` xP for a local coordinate t.
2. We approximate a solution of yptq “a

F pxptqq using the Newton-Raphson method
of tangents with y0 “ yP . Thus,

yi`1 “ yi ´
y2
i ´ F pxptqq

2yi
“

1

2

ˆ

yi `
F pxptqq

yi

˙

@i ě 0

3. The integer n gives us the precision. Hence, the number of iterations depends on
n: for precision Optnq, one can take i to be rlog2pnqs.

Example. Let us consider the hyperelliptic curve
y2
“ xpx´ 1qpx´ 2qpx´ 5qpx´ 6q “ x5

´ 14x4
` 65x3

´ 112x2
` 60x

which has good reduction at 7. Let us consider the point P “ p3, 6q. The local
coordinates at P are given by

xptq “ 3` t
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For yptq we obtain:
i yiptq

0 6
1

14

1 6` 3t´
13

12
t2 ´

13

12
t3 `

1

12
t4 `

1

12
t5

2 6` 3t´
11

6
t2 ´

1

6
t3 ´

115

1728
t4 ´

169

3456
t5 `Opt6q

3 6` 3t´
11

6
t2 ´

1

6
t3 ´

49

462
t4 ´

77

864
t5 `Opt6q

hence,
yptq “ 6` 3t´

11

6
t2 ´

1

6
t3 ´

49

462
t4 ´

77

864
t5 `Opt6q

Algorithm 2. Local coordinate at a finite Weierstrass point
Input: A finite Weierstrass point P “ pxP , 0q P CpKq and an integer n.
Output: A parametrization pxptq, yptqq at P in terms of a local coordinate.

1. We set yptq “ t for a local coordinate t.
2. We approximate xptq using the Newton-Raphson method of tangents. Take

Gpxq “
F pxq

px´ xP q

which is a polynomial in x since F pxP q “ 0. Set

x0 “ xP `
t2

GpxP q
and hpx, tq “ F pxq ´ t2

Then the Newton-Raphson method yields
xi`1ptq “ xiptq ´

hpxiptq, tq

h1pxiptq, tq
where h1px, tq “

Bhpx, tq

Bx

3. The integer n gives us the precision. Hence, the number of iterations depends on
n: for precision Optnq, one can take i to be rlog2pnqs.

Example. Consider again the hyperelliptic curve
y2
“ xpx´ 1qpx´ 2qpx´ 5qpx´ 6q “ x5

´ 14x4
` 65x3

´ 112x2
` 60x

Now take the point P “ p2, 0q. The local coordinates at P are given by
i xiptq

0 2`
1

24
t2

1 2`
1

24
t2 ´

11

6912
t4 `Opt6q

2 2`
1

24
t2 ´

11

6912
t4 `Opt6q

3 2`
1

24
t2 ´

11

6912
t4 `Opt6q
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Thus,
xptq “ 2`

1

24
t2 ´

11

6912
t4 `Opt6q and yptq “ t

At last, we have to consider the case of infinity. We know that degF pxq “ 2g ` 1 and
y2 “ F pxq; this implies that x has a pole of order 2 at 8 while y has a pole of order
2g ` 1.

Algorithm 3. Local coordinate at infinity
Input: The point P8 above x “ 8 and an integer n
Output: A parametrization pxptq, yptqq at P8 such that t has a zero at 8.

1. Take x0 “ t´2 and let

hpx, tq “

ˆ

xg

t

˙2

´ F pxq „„„„„„„� h1px, tq “
Bhpx, tq

Bx

Now approximate a solution for xptq using the Newton-Raphson method
xi`1ptq “ xiptq ´

hpxiptq, tq

h1pxiptq, tq

2. The integer n gives us the precision. Hence, the number of iterations depends on
n: for precision Optnq, one can take i to be rlog2pnqs.

3. Set
yptq “

pxptqqg

t

Example. Let
y2
“ xpx´ 1qpx´ 2qpx´ 5qpx´ 6q “ x5

´ 14x4
` 65x3

´ 112x2
` 60x

be our favorite hyperelliptic curve. At 8 we have
i xiptq

0
1

t2

1
1

t2
`

14

61
´

3181

3721
t2 `

72086

226981
t4 `

39925007

13845841
t6 `Opt8q

2
1

t2
` 14`

2580535

3721
t2 `

8071768502

226981
t4 `

25224060548463

13845841
t6 `Opt8q

3
1

t2
` 14´ 65t2 ` 1022t4 `

31584621039599

13845841
t6 `Opt8q

And, therefore,
xptq “

1

t2
` 14´ 65t2 ` 1022t4 `Opt6q

yptq “
1

t5
`

28

t3
`

66

t
` 224t` 32841t3 ´ 132860t5 `Opt6q
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4.8 Explicit Integrals
Finally, we present the Algorithm to compute Coleman integrals on hyperelliptic curves.

The idea is to first integrate on residue disks and then use the Frobenius lifting to
connect integrals on different residue disks.

Step I - Integrating on residue disks
This first step involves the so called “tiny integrals”. Let P and Q be in the same residue
disk; then we can use the fact (guaranteed by Coleman Theorem) that the function fωis locally analytic.

Algorithm 4. Tiny Coleman integrals
Input: Two points P,Q in the same residue disk and a basis of differentials tωiu2g´1

i“0 .
Output: The integrals şQ

P
ωi.

1. Using one of the algorithms (1), (2) or (3), compute a parametrization pxptq, yptqq
at P in terms of a local coordinate t.

2. Formally integrate
ż Q

P

ωi “

ż Q

P

xi
dx

2y
“

ż tpQq

0

xptqi

2yptq

dxptq

dt
dt

as a power series in t.

Example. Take the hyperelliptic curve
y2
“ xpx´ 1qpx´ 2qpx´ 5qpx´ 6q “ x5

´ 14x4
` 65x3

´ 112x2
` 60x

over Q7 and consider the point P “ p3, 6q. We can find the Teichmüller point T living
in the same residue disk of P (Section 3.3): this is a point fixed by Frobenius φ:

φpT q “ T and
#

xpT q ” xpP q mod 7

ypT q ” ypP q mod 7

To find T , one can just take the Teichmüller lift of xpP q and then solve
y2
“ xpx´ 1qpx´ 2qpx´ 5qpx´ 6q

to find the y-coordinate.
Remark. We should be careful in choosing the correct sign of the y-coordinate.
sage: R.<x>=QQ[’x’]
sage: E= HyperellipticCurve(x^5-14*x^4+65*x^3 -112*x^2+60*x)
sage: K=Qp(7,8)
sage: EK=E.change_ring(K)
sage: P=(K(3),K(6));
sage: EK.frobenius(P) == P

False
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sage: TP = EK.teichmuller(P); TP
(3+4*7+6*7^2+3*7^3+2*7^5+6*7^6+2*7^7 +O(7^8) :
6+5*7+6*7^2+6*7^3+3*7^4+7^5+2*7^6+5*7^7+O(7^8) :
1+O(7^8))

sage: E.frobenius(TP) == TP
True

This gives us the Teichmüller point
T “

`

3` 4 ¨ 7` 6 ¨ 72
` 3 ¨ 73

` 2 ¨ 75
` 6 ¨ 76

` 2 ¨ 77
`Op78

q;

6` 5 ¨ 7` 6 ¨ 72
` 6 ¨ 73

` 3 ¨ 74
` 75

` 2 ¨ 76
` 5 ¨ 77

`Op78
q
˘

Now we compute the integral
ż T

P

ω0 “

ż T

P

dx

2y
“ 5 ¨ 7` 3 ¨ 72

` 3 ¨ 73
` 3 ¨ 74

` 6 ¨ 76
` 77

`Op78
q

sage: K = pAdicField (7, 8)
sage: x = polygen(K)
sage: C = HyperellipticCurve(x^5 -14*x^4+65*x^3 -112*x^2+60*x)
sage: P = C(3,6);
sage: TP = C.teichmuller(P);
sage: x, y = C.monsky_washnitzer_gens ()
sage: C.tiny_integrals ([1],P,TP)

5*7 + 3*7^2 + 3*7^3 + 3*7^4 + 6*7^6 + 7^7 + O(7^8)

Remark. One can even integrate any holomorphic differential ω.
Remark. Since P and Q are in the same residue disk, all the power series involved are,
in fact, power series in pt
Remark. This works either on Weierstrass or non-Weierstrass residue disks.

P1

Q 1

P2

Q 2

Figure 4.3: Tiny Integrals in non-Weierstrass and Weierstrass residue disks

Step II - Connecting two integrals
Suppose now that P and Q lie in two different residue disks. We cannot use the
method of tiny integrals anymore: the problem is that now the series expansion does
not converge everywhere.

In this case, we have to do a distinction between the case of Weierstrass and non-
Weierstrass disks.

We essentially follow the construction of Coleman.
We indicate with UP the residue disk of the point P and with UQ the residue disk of

Q. As we have seen, in each residue disk there exists a unique Teichmüller point fixed
by Frobenius.
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The idea is to perform the two tiny integrals between P and ξP (the Teichmüller
point of UP ) and from ξQ to Q and then to connect them using Frobenius:

ż Q

P

ω “

ż ξP

P

ω `

ż ξQ

ξP

ω `

ż Q

ξQ

ω

P

⇠P

Q
⇠Q

Frobenius

Figure 4.4: Coleman Integral via Teichmüller points
Hence, we have reduced the problem to compute

ż ξQ

ξP

ω

Connecting two integrals: non-Weierstrass disks

The idea relies in computing the action of Frobenius on the elements of the basis of
H1MWpC 1q.

Algorithm 5. Coleman integral with endpoints in two non-Weierstrass disks
Input: Two points P,Q in different residue disks, a basis of differentials tωu2g´1

i“0 and
an integer m such that the residue fields of P and Q are contained in Fpm .
Output: The integrals şQ

P
ωi.

1. Compute Teichmüller points ξP and ξQ.
2. Calculate the action of the m-th power of Frobenius on each basis element:

pφmq˚ ωi “ dfi `
2g´1
ÿ

i“0

Mijωj

3. By change of variables, we get the fundamental linear system
2g´1
ÿ

i“0

pM ´ Iqi,j

ż ξQ

ξP

ωj “ fipξP q ´ fipξQq

4. One can prove that the matrix M ´ I is invertible. Thus, we can solve the system
above and find the desired integral.

Remark (Action of Frobenius). To compute the action of the m-th power of Frobenius,
first we have to compute the action of Frobenius on the basis tωiu2g´1

i“0 .
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As already mentioned, we can use the Kedlaya’s algorithm [Bal, §2.2.2]:

Algorithm 6. Kedlaya’s Algorithm
Input: The basis of differentials tωu2g´1

i“0 .
Output: Functions hi P A: and a 2g ˆ 2g matrix B such that

φ˚ωi “ dhi `
2g´1
ÿ

i“0

Bi,jωj

for all i “ 0, . . . , 2g ´ 1

1. Compute φpxq and φpyq as infinite series in A:.
2. Use Newton iteration method to approximate

y

φpyq

3. Write
φ˚ωi “ φ˚

ˆ

xi
dx

y

˙

“ pxpi`p´1 y

φpyq

dx

2y
“ dhi `

2g´1
ÿ

i“0

Bi,jωj

Denote by f (respectively h) the column vector whose i-th component is fi (hi).Once that we have the action of Frobenius, we can define:
f “ φm´1

phq `Bφm´2
phq `BφKpBqφ

m´3
phq ` . . .`BφKpBq ¨ . . . ¨ φ

m´2
K pBqh

M “ φKpBq ¨ . . . ¨ φ
m´1
K pBq

Remark (Change of variables). To obtain the fundamental linear system we observe that
ż φmpξQq

φmpξP q

ωi
Theorem (4.3.1)
“

ż ξQ

ξP

pφmq˚ ωi “

ż ξQ

ξP

˜

dfi `
2g´1
ÿ

i“0

Mi,jωj

¸

“

“ fipξQq ´ fipξP q `
2g´1
ÿ

i“0

Mij

ż ξQ

ξP

ωj

but now
ż φmpξQq

φmpξP q

ωi “

ż ξQ

ξP

ωi

from which
ż ξQ

ξP

ωi “ fipξQq ´ fipξP q `
2g´1
ÿ

i“0

Mij

ż ξQ

ξP

ωj

Connecting two integrals: Weierstrass disks

Finally, it only remains to study the situation in which P and Q live in two different
residue disks of which at least one is Weierstrass.

We will assume that ω is everywhere meromorphic with no poles at P and Q. This
is because otherwise we cannot even define şQ

P
ω.

68



IV. P-ADIC INTEGRALS ON CURVES §4.8. EXPLICIT INTEGRALS

Lemma 4.8.1. Let P,Q P CpCpq with P a Weierstrass point. Let ω be an odd differential
which is everywhere meromorphic on C and has no poles in P or Q. Then for ι, the
hyperelliptic involution,

ż Q

P

ω “
1

2

ż Q

ιpQq

ω

In particular, if Q is also a Weierstrass point, then
ż Q

P

ω “ 0

Proof. Observe that, since P is Weierstrass, then
ż Q

P

ω “

ż ιpP q

P

ω `

ż ιpQq

ιpP q

ω `

ż Q

ιpQq

ω “

“

ż P

P

ω

“0

`

ż Q

P

ι˚pωq `

ż Q

ιpQq

ω “

ż Q

P

p´ωq `

ż Q

ιpQq

ω

Thus,
2

ż Q

P

ω “

ż Q

ιpQq

ω

Therefore, in order to compute şQ

P
ω, we find the Weierstrass point P 1 in the residue

disk of P and then
ż Q

P

ω “

ż P 1

P

ω `

ż Q

P 1
ω “

ż P 1

P

ω `
1

2

ż Q

ιpQq

ω

where the first is a tiny integral, while the second integral involves points lying in
non-Weierstrass disks.

P

P 0

Q

Figure 4.5: Coleman integral involving Weierstrass disks
Example. Let us consider again the hyperelliptic curve

y2
“ xpx´ 1qpx´ 2qpx´ 5qpx´ 6q “ x5

´ 14x4
` 65x3

´ 112x2
` 60x

and the points P “ p3, 6q, Q “ p10, 120q:
ż Q

P

ω0 “

ż Q

P

dx

2y
“ 6 ¨ 7` 6 ¨ 72

` 3 ¨ 73
` 3 ¨ 74

` 2 ¨ 75
` 6 ¨ 77

`Op78
q

ż Q

P

ω1 “

ż Q

P

x
dx

2y
“ 4 ¨ 7` 2 ¨ 72

` 6 ¨ 73
` 4 ¨ 75

` 5 ¨ 77
`Op78

q

ż Q

P

ω2 “

ż Q

P

x2dx

2y
“ 2` 5 ¨ 7` 2 ¨ 72

` 4 ¨ 73
` 74

` 5 ¨ 75
` 2 ¨ 76

` 4 ¨ 77
`Op78

q

ż Q

P

ω3 “

ż Q

P

x3dx

2y
“ 6` 3 ¨ 7` 3 ¨ 73

` 6 ¨ 75
` 6 ¨ 76

`Op78
q
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sage: K=Qp(7,8)
sage: x=polygen(K)
sage: E=HyperellipticCurve(x^5 - 14*x^4 + 65*x^3 - 112*x^2 + 60*x)
sage: P=E(3,6)
sage: Q=E(10 ,120)
sage: w=E.invariant_differential ()
sage: x, y=E.monsky_washnitzer_gens ()
sage: (w). coleman_integral(P,Q)

6*7+6*7^2+3*7^3+3*7^4+2*7^5+6*7^7+O(7^8)
sage: (x*w). coleman_integral(P,Q)

4*7+2*7^2+6*7^3+4*7^5+5*7^7+O(7^8)
sage: (x^2*w). coleman_integral(P,Q)

2+5*7+2*7^2+4*7^3+7^4+5*7^5+2*7^6+4*7^7+O(7^8)
sage: (x^3*w). coleman_integral(P,Q)

6+3*7+3*7^3+6*7^5+6*7^6+O(7^8)

Example. Let us consider the elliptic curve ’11.a’ (http://www.lmfdb.org/EllipticCurve/
Q/11/a/2):

E 1 : y2
` y “ x3

´ x2
´ 10x ´ 20 „„„„„„„„„„„„�

Weierstrass form E : y2
“ x3

´ 13392x´ 1080432

E has good reduction at 19. Consider the point P “ p168, 1188q which is a 5-torsion
point on E .
sage: K=Qp(19 ,15)
sage: EE=EllipticCurve(K,’11a’)
sage: E=EE.short_weierstrass_model ()
sage: P=E(K(168),K(1188))
sage: 5*P

(0 : 1 + O(19^8) : 0)
sage: w=E.invariant_differential ();
sage: x, y=E.monsky_washnitzer_gens ()
sage: w.coleman_integral(P,2*P)

O(19^8)
ż 2P

P

ω0 “

ż 2P

P

dx

2y
“ Op198

q

which is consistent with the fact that ω0 is holomorphic and P is a torsion point ([Col3,
Proposition 3.1]).
sage: (x*w). coleman_integral(P,2*P)

9+2*19+15*19^2+3*19^3+15*19^4+3*19^5+15*19^6+3*19^7+O(19^8)
ż 2P

P

ω1 “

ż 2P

P

x
dx

2y
“ 9`2¨19`15¨192

`3¨193
`15¨194

`3¨195
`15¨196

`3¨197
`Op198

q

This reflects the fact that ω1 is not holomorphic on E .
sage: (x*w). coleman_integral (2*P,3*P)

18+5*19+15*19^2+3*19^3+15*19^4+3*19^5+15*19^6+3*19^7+O(19^8)
sage: (x*w). coleman_integral (3*P,4*P)

9+2*19+15*19^2+3*19^3+15*19^4+3*19^5+15*19^6+3*19^7+O(19^8)
ż 4P

3P

ω1 “

ż ´P

´2P

x
dx

2y
“ 9`2¨19`15¨192

`3¨193
`15¨194

`3¨195
`15¨196

`3¨197
`Op198

q

and this is consistent with the linearity on Div0
pEq of the map µE (Theorem 4.3.1).

70

http://www.lmfdb.org/EllipticCurve/Q/11/a/2
http://www.lmfdb.org/EllipticCurve/Q/11/a/2


IV. P-ADIC INTEGRALS ON CURVES §4.8. EXPLICIT INTEGRALS

The detection of torsion points is one of the original applications of the theory of
Coleman integrals [Col3]. Another very important example of the power of this tool
is illustrated in [Col2], a very influential paper in which Coleman resumed an idea of
Chabauty and proved that p-adic abelian integrals could be used to produce effective
bounds for the number of rational points on curves.
Proposition 4.8.2. Suppose that K is a complete discretely valued subfield of Cp.
Suppose j : pC, c0q Ñ pA,Oq is a morphism over K of a pointed curve into an abelian
variety, both with good reduction. Suppose G is a subgroup of ApKq, then jpCpKqqXG
is contained in the set of all x P CpKq such that

ż x

c0

ω “ 0

for all ω P j˚VG where VG “
!

ω P H0pA,Ω1
A{Kq fωpxq “ 0, @x P G

)

.

Example. Let us consider the hyperelliptic curve
E : y2

“ x7
`

9

4
x6
´ 2x5

´ 9x4
´ 4x3

` 8x2
` 8x` 2

having good reduction at 7 and whose Jacobian has rank 1. E has the following five
known rational points:

EpQq Ě EpQqknown “
"

8,

ˆ

´1,
1

2

˙

,

ˆ

´1,´
1

2

˙

,

ˆ

1,
5

2

˙

,

ˆ

1,´
5

2

˙*

sage: p=7; K=Qp(p,10)
sage: x=polygen(K)
sage: E=HyperellipticCurve(x^7+9/4*x^6-2*x^5-9*x^4-4*x^3+8*x^2+8*x+2)
sage: w=E.invariant_differential ()
sage: x, y=E.monsky_washnitzer_gens ()
sage: INFTY=E(K(0),K(1),K(0))
sage: P=E(K(-1),K( -1/2))
sage: P1=E(K(-1),K(+1/2))
sage: P2=E(K(1),K( -5/2))
sage: P3=E(K(1),K(5/2))
We compute the coleman integrals from 8 to `

´1,´1
2

˘ on the basis of H1MWpEq
sage: A=E.coleman_integrals_on_basis(INFTY ,P)
sage: a=A[0]
sage: b=A[1]
sage: c=A[2]

A “

¨

˝

5 ¨ 73 ` 5 ¨ 74 ` 4 ¨ 76 ` 4 ¨ 77 ` 2 ¨ 78 `Op79q

3 ¨ 7` 5 ¨ 72 ` 73 ` 2 ¨ 74 ` 2 ¨ 76 ` 5 ¨ 77 ` 4 ¨ 78 `Op79q

6 ¨ 7` 72 ` 5 ¨ 74 ` 4 ¨ 75 ` 6 ¨ 76 ` 5 ¨ 77 ` 4 ¨ 78 `Op79q

˛

‚

Define the following differentials
sage: alpha=b*w-a*x*w
sage: beta=c*w-a*(x^2)*w
We observe that the integrals of both α and β vanish at every rational point:
sage: alpha.coleman_integral(P,P1)

O(7^10)
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sage: alpha.coleman_integral(P,P2)
O(7^10)

sage: alpha.coleman_integral(P,P3)
O(7^10)

sage: beta.coleman_integral(P,P1)
O(7^10)

sage: beta.coleman_integral(P,P2)
O(7^10)

sage: beta.coleman_integral(P,P3)
O(7^10)

α and β play the role of ω in Proposition 4.8.2.
Remark. Actually, it is also possible to prove that EpQqknown is all EpQq [Bal+, Algorithm
3.3 and Example 4.1].
Remark. Potentially, the problem of computing rational points on curve can be made
effective (provided that the curve respects the hypothesis of Chabauty-Coleman). In
Chapter 5 we’ll describe an algorithm based on [Bal, Algorithm 6.2.1].
References. For a complete overview of the potential of the algorithms described above,
one may have a look at the SAGE Reference Manual “Hyperelliptic curves over a p-
adic field”: http://doc.sagemath.org/html/en/reference/curves/sage/schemes/
hyperelliptic_curves/hyperelliptic_padic_field.html.

4.9 Implementation Analysis
In the previous section we have given some examples of the implementation of the
algorithm in SAGE. In the following, we present some results about the precision of the
computations. The proofs can be found in [BBK, §4].
Proposition 4.9.1. Let

şQ

P
ω be a tiny integral in a non-Weierstrass residue disc (the

discussion about Weierstrass disks is similar), with P,Q P CpKq with an accuracy of n
digits. Let pxptq, yptqq be the local interpolation between P and Q defined by

xptq “ xP ¨ p1´ tq ` xQ ¨ t yptq “
a

F pXptqq

Let ω “ gpx, yq be a differential of the second kind such that hptq “ gpxptq, yptqqdx
belongs to OJtK. If we truncate hptq modulo tm, then the computed value of the integral
şQ

P
ω will be correct up to

mintn,m` 1´ tlogppm` 1quu

digits of absolute precision.

Proposition 4.9.2. Let
şQ

P
ω be a Coleman integral, with ω a differential of the second

kind and with P and Q living in two different non-Weierstrass residue disks and a
precision of n digits. Let M be the matrix of the action of Frobenius on the basis
differentials (Algorithm 6). Set B “M´1, and let m “ νppdetpBqq. Then the computed
value of the integral

şQ

P
ω will be accurate up to

n´maxtm, tlogppnquu

digits of precision.
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We conclude this chapter with a note about the running time of the algorithm. For
instance, let us observe how SAGE uses the time in computing the following function:
sage: w.coleman_integral(P,Q)

ă 0.0001% ´ Setup.
10.88647% ´ Tiny Integrals.
67.75531% ´ Monsky-Washnitzer Computations.
ă 0.0001% ´ Evaluating f (Remark of Algorithm 6).
0.103681% ´ Evaluating f over the Rationals.
20.47693% ´ Changing Rings.
0.570244% ´ Evaluating f on p-adic Field with Capped Precision.
0.207361% ´ Solve the Fundamental Linear System.

We immediately notice that the great majority of the time is spent doing Monsky-
Washnitzer computations and changing rings.

This is because there is no “good” (in the sense of fast) linear algebra over Qp and,
therefore, we work over the rationals where linear algebra is much faster.

Essentially, changing rings consists in pretending that the polynomials Bnpxq in the
definition of A: are defined over Q instead of Qp.
Example. Consider the Hyperelliptic curve with even model

E : y2
“ x6

` 8x5
` 22x4

` 22x3
` 5x2

` 6x` 1

This has good reduction at 3 and its Jacobian has Mordell-Weil rank 1.
We compute the Matrix of Frobenius appearing in the fundamental linear system

sage: p = 3
sage: prec = 10
sage: R.<x> = QQ[’x’]
sage: A,forms=monsky_washnitzer.matrix_of_frobenius_hyperelliptic(

x^6+8*x^5+22*x^4+22*x^3+5*x^2+6*x+1,p,prec)
Because of the dimension of the matrix we report here only the first column

¨

˚

˚

˚

˚

˝

32 ` 34 ` 2 ¨ 35 ` 2 ¨ 36 ` 2 ¨ 37 ` 2 ¨ 39 `Op310q

3` 32 ` 33 ` 34 ` 35 ` 36 ` 2 ¨ 38 ` 2 ¨ 39 `Op310q

3` 2 ¨ 32 ` 34 ` 2 ¨ 35 ` 2 ¨ 36 `Op310q

2 ¨ 3` 32 ` 33 ` 35 ` 38 ` 2 ¨ 39 `Op310q

3` 33 ` 2 ¨ 34 ` 35 `Op310q

˛

‹

‹

‹

‹

‚

In the following, we change the ring of definition of the matrix A:
sage: EQ=HyperellipticCurve(x^6+8*x^5+22*x^4+22*x^3+5*x^2+6*x+1)
sage: K=Qp(p,prec)
sage: E=EQ.change_ring(K)
sage: M=A.change_ring(ZZ)
we obtain

M “

¨

˚

˚

˚

˚

˝

45774 23097 37179 49839 26815
53580 13467 16317 15091 41178
2046 44625 3159 17202 4756
46212 45531 52146 46726 30348
435 33288 52140 31222 8975

˛

‹

‹

‹

‹

‚

sage: V = VectorSpace(K,5)
sage: R = forms [0]. base_ring ()
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sage: PP=E(K(0),K(1))
sage: QQ=E(K(0),K(-1))
These two are non-Weierstrass rational points on E and they turn out to be the Teich-
müller points in their residue disks:
sage: E.is_same_disc(PP,QQ)

False
sage: E.is_weierstrass(PP)

False
sage: E.is_weierstrass(QQ)

False
sage: E.frobenius(PP) == PP

True
sage: E.frobenius(QQ) == QQ

True
We evaluate the functions fi at the two points PP and QQ
sage: L=[f(R(PP[0]),R(PP[1]))-f(R(QQ[0]),R(QQ[1])) for f in forms]
sage: b=V(L)
Finally, we solve the fundamental linear system
sage: M_sys = matrix(K, A). transpose () - 1
sage: M_sys **(-1) * b
obtaining

ż p0,´1q

p0,1q

ω0 “ 3´1
` 2` 2 ¨ 32

` 33
` 34

` 36
`Op37

q

ż p0,´1q

p0,1q

ω1 “ 1` 33
` 35

` 2 ¨ 36
` 37

`Op38
q

ż p0,´1q

p0,1q

ω2 “ 1` 32
` 33

` 2 ¨ 34
` 35

`Op38
q

ż p0,´1q

p0,1q

ω3 “ 2 ¨ 3´2
` 1` 3` 33

` 35
`Op36

q

ż p0,´1q

p0,1q

ω4 “ 2 ¨ 3´1
` 3` 2 ¨ 32

` 2 ¨ 33
` 34

` 2 ¨ 35
`Op37

q

References. One can have a look at the complete source code developed by Bradshaw at
https://github.com/sagemath/sage/blob/master/src/sage/schemes/hyperelliptic_
curves/hyperelliptic_padic_field.py - The previous example roughly follows the
code around line 650.
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CHAPTER 5 Rational Points on Curves

In this chapter we give a brief description of the method of Chabauty and Coleman; this
is a p-adic tool for determining the set of rational points on a curve C defined over Q of
genus g ě 2. We provide a theoretical introduction as well as some numerical examples
of the implementation of this method. The purpose is to study one of the applications
of Coleman integration theory.

The main reference is the article of McCallum and Poonen [MP] but of course we
also keep an eye on the original works of Chabauty [Cha] and Coleman [Col2]. For the
description of the algorithm at the end of Section 5.3, we refer to the PhD thesis of
Balakrishnan [Bal, Chapter 6].

5.1 Formulation of the Problem
Let us consider a curve C defined over Q, the field of rational numbers. The problem
of finding the set of rational points on C is one of the fundamental questions arising in
algebraic geometry.

Despite its appearance, the question is very difficult and the numerous attempts of
solving it have led to the development of many new techniques in geometry and number
theory. For centuries, mathematicians have tried to find a general method to compute
CpQq but even nowadays we do not know if there is an algorithm suitable to approach
this problem; in fact, we do not even know if there is an algorithm deciding whether
CpQq is finite or not.1

Fortunately, in some cases, we have quantitative results giving at least the finiteness
of the number of rational points on a curve: in 1983, G. Faltings proved the Mordell
conjecture (which is now known as Faltings’ Theorem) stating that a curve of genus
greater than 1 over Q has only finitely many rational points (Endlichkeitssätze für
abelsche Varietäten über Zahlkörpern, 1983).

However, Faltings’ proof is not effective in the sense that it does not yield an
explicit method of finding CpQq. Nevertheless, this can be done, thanks to the work of
C. Chabauty before and eventually R. Coleman, in the case when the Jacobian of the
curve has Mordell-Weil rank strictly less than the genus of C.

In particular, in the article of Coleman [Col2], the integration theory developed so
far plays a central role.
Definition. The Jacobian of a curve C is

JpCq “ H0
pΩ1

Cq
˚

H1pCq
where H1pCq ãÑ H0

pΩ0
Cq

˚ via the map rγs Ñ
ż

γ

´

1Some of these questions have been solved for other base rings such as C, R, Fp, Qp and Z (see, for
instance, the Hilbert 10th problem).
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5.2 The Theorem of Chabauty
Let J be the Jacobian of our curve C. By the Abel-Jacoby Theorem, we know that J is
an abelian variety of dimension g over Q.

Suppose that we know a point O P CpQq; then, we can identify our curve with a
subvariety of its Jacobian using the Abel-Jacobi embedding

C ãÝÝÝÑ J

P ÝÝÝÑ rP ´Os

sending P to the class of the divisor of P ´O.
The idea is to perform the following steps:

1. Compute JpQq.
2. Determine which points in JpQq lie on C.
Observe that computing JpQq is, in general, a difficult problem. However, by the
Mordell-Weil Theorem, we know that JpQq is a finitely generated abelian group. Hence,
describing it can be read as “finding generators and relations”. From now on we’ll sup-
pose that JpQq is known.
Theorem 5.2.1 (Mordell-Weil). If C is defined over a number field K , then JpKq is a
finitely generated abelian group.

Example. Consider the curve
y2
“ xpx´ 1qpx´ 2qpx´ 5qpx´ 6q

all the computation are implemented in MAGMA.
> P<x> := PolynomialRing(Rationals ());
> C := HyperellipticCurve(x*(x-1)*(x-2)*(x-5)*(x-6));
> BadPrimes(C);
> ptsC := Points(C : Bound := 1000); ptsC;
> J := Jacobian(C);
> RankBound(J);
We get

JpQq » Zˆ JpQqtors
> PJ:= J! [ ptsC[5], ptsC [1] ];
> Order(PJ);
> heightconst := HeightConstant(J : Effort :=2, Factor );
> LogarithmicBound := Height(PJ) + heightconst;
> AbsoluteBound := Ceiling(Exp(LogarithmicBound ));
> PtsUpToAbsBound := Points(J : Bound:= AbsoluteBound );
> ReducedBasis ([ pt : pt in PtsUpToAbsBound ]);
> Height(PJ);
The generator for the the infinite part is given by rp3, 6q ´ 8s.
> TT,mm:= TwoTorsionSubgroup(J); TT;
> T,m:= TwoTorsionSubgroup(J); T;
> m(T.1); m(T.2); m(T.3); m(T.4);
> PJ1:= J! [ ptsC[3], ptsC [1] ]; Order(PJ1);
> PJ2:= J! [ ptsC[4], ptsC [1] ]; Order(PJ2);
> PJ3:= J! [ ptsC[7], ptsC [1] ]; Order(PJ3);
> PJ4:= J! [ ptsC[8], ptsC [1] ]; Order(PJ4);
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Hence,
JpQqtors »

Z
2Z
ˆ

Z
2Z
ˆ

Z
2Z
ˆ

Z
2Z

and it is generated by
rp1, 0q ´ 8s rp2, 0q ´ 8s rp5, 0q ´ 8s rp6, 0q ´ 8s

Remark. In some cases, it suffices something less than the full knowledge of JpQq [MP,
Remark 2.2].

Chabauty idea was to study the lie Group JpQpq. Consider JQp , the base change
of J to Qp (naively, we are considering the variety defined by the same equations of J
but we think at them as defined over Qp). We take

H0
`

JQp ,Ω
1
˘

the g dimensional Qp-vector space of 1-forms on JQp , and we consider ωJ P H0
`

JQp ,Ω
1
˘;

we can construct a map
ηJ : JpQpq ÝÝÝÑ Qp

P ÝÝÝÑ

ż P

0

ωJ

uniquely characterized by:
• ηJ is a homomorphism.
• There exists an open subset U Ď JpQpq such that if Q P U , then şQ

0
ωJ can

be computed by expanding ωJ in power series in local coordinates, finding a
formal antiderivative and evaluating the resulting formal expansion at the local
coordinates of Q.

We obtain a bilinear pairing
JpQpq ˆH0

`

JQp ,Ω
1
˘

ÝÝÝÑ Qp

pP, ωJq ÝÝÝÑ

ż P

O

ωJ

that we can re-write as
log : JpQpq ÝÝÝÑ

`H0
`

JQp ,Ω
1
˘˘˚

Definition. We denote by ĆJpQq the p-adic closure of JpQq in JpQpq.
Lemma 5.2.2 ([MP, Lemma 4.2]). If r1 “ dim ĆJpQq and r “ dim JpQq, then r1 ď r.

Now we recall that CpQpq lies in JpQpq and, in particular, it is a one dimensional
submanifold.
Theorem 5.2.3 ([Cha]). If C is a curve of genus g ě 2 defined over Q and r1 ă g, then
CpQpq X

ĆJpQq is finite and, therefore, so is CpQq.
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5.3 The Method of Coleman
Now we turn the previous Theorem into a practical method of computing rational points
following [Col2]. The idea is to find functions on JpQpq (here intervenes Coleman
integration theory) vanishing on ĆJpQq and restrict them to parametrizations of CpQq.

Suppose now that our curve C has good reduction at p; thus, J has good reduction
at p as well and the embedding

C ãÝÝÝÑ J

induces an embedding of the special fiber of C into the reduction of J .
One can show that the embedding above induces an isomorphism of Qp-vector spaces

H0
`

JQp ,Ω
1
˘

» H0
`

CQp ,Ω1
˘

Suppose that ω is the image of ωJ via this isomorphism; then, we have
ż Q

P

ω “

ż rQ´P s

0

ωJ

and we can recover some properties of the integral on the right from the theory of
integration on J .
(i) If Pi, Qi P CpQpq are such that rřpQi ´ Piqs is a torsion element of JpQpq, then

ÿ

ż Qi

Pi

ω “ 0

(ii) If P and Q have the same reduction in Fp, then şQ

P
ω can be computed by expanding

in power series in a local parameter t on the curve C.
By the definition of ηJ , its restriction to CpQpq, is the function

η “ ηJ |CpQpq : CpQpq ÝÝÝÑ Qp

P ÝÝÝÑ

ż P

O

ω

One can see that
log

´

ĆJpQq
¯

Ď H0
`

JQp ,Ω
1
˘˚
» Q‘gp

is a Zp-submodule of rank r1. If r1 ă g, there exists a non-zero Qp-linear functional
λ : H0

`

JQp ,Ω
1
˘˚

� Qp

that vanishes on log
´

ĆJpQq
¯

. By duality, λ corresponds to a particular ωJ P H0
`

JQp ,Ω
1
˘.

Hence, λ gives rise to ηJ , ω, η as above:
ηJ : JpQpq

log
ÝÝÝÑ H0

`

JQp ,Ω
1
˘˚ λ
ÝÝÝÑÑ Qp

and so ηJ vanishes on ĆJpQq. It follows that ω satisfies also
(iii) If Pi, Qi P CpQpq are such that rřpQi ´ Piqs P ĆJpQq, then ř

şQi
Pi
ω “ 0.

and η vanishes on CpQpqX
ĆJpQq. Now we only need to bound the number of zeros of η.
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Theorem 5.3.1 (Coleman). Let C, J, p, r1 be as above. Suppose also that p is a prime of
good reduction for C.
a. Let ω be a nonzero 1-form in H0

`

CQp ,Ω1
˘

satisfying conditions (i)-(iii). Scale ω

by an element of Qˆp so that it reduces to a nonzero 1-form ω P H0
`

CFp ,Ω1
˘

.
Suppose Q P CpFpq. Let m “ ordQω. If m ă p ´ 2, then the number of points in
CpQq reducing to Q is at most m` 1.

b. If p ą 2g, then #CpQq ď #CpFpq ` p2g ´ 2q.
The proof requires some technical lemmas in p-adic analysis involving the theory of

Newton Polygons [Gou, §6.4].
Coleman’s Theorem can be improved by choosing the “best” ω for each residue disk.

Theorem 5.3.2 (M. Stoll). If r ă g and p ą 2r ` 2 is a prime of good reduction then
#CpQq ď #CpFpq ` 2r

Explicit computations on the map η can potentially give lot of informations about
the set CpQq.

In the following, we suppose that C is a hyperelliptic curve of equation y2 “ F pxq
where F is a monic and nonsingular polynomial defined over Q.

Algorithm 7. Single Coleman integrals on basis elements from a Weierstrass point
to a parameter z.
Input: A Weierstrass basepoint P , a non-Weierstrass point Q (whose residue disk
will be the object of investigation) and a holomorphic basis of differentials.
Output: A power series fQpzq “ şQz

Q
ωi, where Qz “

´

z ` xpQq,
a

fpz ` xpQqq
¯

is
taken so that Qz is in the residue disk of Q.

1. Compute Qz “

´

xpQq ` z,
a

fpz ` xpQqq
¯

, choosing the correct square root.
2. Compute φpQzq, choosing the right square root.
3. Compute the local coordinate at Qz: xptq “ t` z ` xpQq, yptq “a

fpxptqq.
4. This gives us

ż Qz

φpQzq

ωi “

ż 0

xpφpQqq´xpQq

xptqi
dxptq

2yptq
dt

5. Using the fundamental linear system, compute
fQpzq “

ż Qz

P

ωi “ pM ´ Iq´1

ˆ

´fipQzq ´

ż Qz

φpQzq

ωi

˙

Remark (Effectiveness). It is necessary to point out that the algorithm presents some
limitations (for a more detailed analysis of the algorithm one can refer to [MP, §7].):

• It may be difficult to bound r1 and r.
• In the case when r1 “ g, there is no chance of finding a bound for #CpQq.
• Even if #

´

CpQpq X
ĆJpQq

¯

is known, the true value of #CpQq could be smaller.
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5.4 Examples
Example. Let’s consider our Hyperelliptic curve

E : y2
“ xpx´ 1qpx´ 2qpx´ 5qpx´ 6q “ x5

´ 14x4
` 65x3

´ 112x2
` 60x

whose Jacobian has Mordell-Weil rank 1. We have already observed that the curve has
good reduction at 7.

Suppose we want to find all the rational points on E . The purpose is to see the
method of Coleman in action.

Since E has good reduction at 7, we reduce the equation defining E over F7:
Ē : y2

“ x5
` 2x3

` 4x

We consider the following table:
x P F7 0 1 2 3 4 5 6
x5 P F7 0 1 4 5 2 3 6

2x3 P F7 0 2 2 5 2 5 5
x5 ` 2x3 ` 4x P F7 0 0 0 1 6 0 0

Remark. α P F7 is a square if and only if α “ 0, 1, 2, 4 which means that y “ 0, 1, 6.
EpF7q “ tp0, 0q; p1, 0q; p2, 0q; p5, 0q; p6, 0q; p3, 6q; p3, 1q;8u

Notice that EpF7q has 8 elements and we can represent them in the following way:

0 1 2 3 4 5 6
0
1
2
3
4
5
6

8

Figure 5.1: Representation of EpF7q

We can try to lift these points and we find:
EpQq Ě tp0, 0q; p1, 0q; p2, 0q; p5, 0q; p6, 0q; p3, 6q; p3,´6q;8u

We now want to study if there are other rational points in the residue disks of the two
non-Weierstrass points P˘ “ p3,˘6q. First of all we consider E defined over Q7 and
we compute the Coleman integrals

a “

ż p3,6q

8

ω0 b “

ż p3,6q

8

ω1

where ω0 “ dx{2y and ω1 “ xdx{2y are the first elements of the basis of differentials.
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sage: Campo=QQ; x=polygen(Campo)
sage: EQ=HyperellipticCurve(x^5-14*x^4+65*x^3 -112*x^2+60*x)
sage: p=7; prec =10; K=Qp(p,prec); E=EQ.change_ring(K)
sage: w=E.invariant_differential ()
sage: x, y=E.monsky_washnitzer_gens ()
sage: INFTY=E(K(0),K(1),K(0)); P=E(K(3),K(6))
sage: A=E.coleman_integrals_on_basis_hyperelliptic(INFTY ,P)
sage: a=A[0]; b=A[1]
We obtain:

a “ 6 ¨ 7` 6 ¨ 72
` 3 ¨ 73

` 3 ¨ 74
` 2 ¨ 75

` 6 ¨ 77
` 4 ¨ 78

` 4 ¨ 79
`Op710

q

b “ 4 ¨ 7` 2 ¨ 72
` 6 ¨ 73

` 4 ¨ 75
` 5 ¨ 77

` 3 ¨ 78
`Op710

q

Let us define a new differential α (living in the annihilator of the Jacobian JpEq as in
Proposition 4.8.2):

α “ bω0 ´ aω1

Remark. It is immediate to verify that şQ

P`
α vanishes on each rational point Q (the

situation is similar to the one in the example following Proposition 4.8.2).
Now we want to integrate α from the base point P` to a generic point Qt ” pt, sqin the same residue disk. In particular, since this will be a tiny integral, we can

compute integrals expanding the equation defining E in power series in the uniformizing
parameter x:

ż pt,sq

p3,6q

α “

ż pt,sq

p3,6q

pb´ axq
dx

2y
“

ż t

3

pb´ axqdx

2px5 ´ 14x4 ` 65x3 ´ 112x2 ` 60xq1{2
“

“

ż t

3

b´ ax

2

ˆ

1

6
´
x´ 3

12
`

5px´ 3q2

54
´

29px´ 3q3

432
`

`
352px´ 3q4

5184
`O

`

px´ 3q5
˘

˙

dx “

“
1

2

ż t

3

„ˆ

´
a

2
`
b

6

˙

`

ˆ

a

12
´

b

12

˙

px´ 3q `

ˆ

´
7a

36
`

5b

54

˙

px´ 3q2`

`

ˆ

47a

432
´

29b

432

˙

px´ 3q3 `Oppx´ 3q4q



dx “

“
1

2

„ˆ

´
a

2
`
b

6

˙

pt´ 3q `

ˆ

a

24
´

b

24

˙

pt´ 3q2 `

ˆ

´
7a

108
`

5b

162

˙

pt´ 3q3`

`

ˆ

47a

1728
´

29b

1728

˙

pt´ 3q4 ` ...



Notice that we are working in the residue disk of p3, 6q: this means that t ” 3 mod 7.
Hence, we can write t “ 3` 7z for z P Z7. We get
ˆ

´
a

4
`

b

12

˙

p7zq`

ˆ

a

48
´

b

48

˙

p7zq2`

ˆ

´
7a

216
`

5b

324

˙

p7zq3`

ˆ

47a

3456
´

29b

3456

˙

p7zq4`...
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Now we substitute the exact values of a and b:
sage: alpha=b*w-a*x*w
sage: z=polygen(K)
sage: f=1/2*(( -1/2*a+1/6*b)*(7*z)+(1/24*a -1/24*b)*(7*z)^2+

( -7/108*a+5/162*b)*(7*z)^3+(47/1728*a -29/1728*b)*(7*z)^4)
We find

fpzq “ p2 ¨ 73
` 74

`Op75
qqz ` p5 ¨ 73

` 2 ¨ 74
`Op75

qqz2
`
ÿ

jě3

Op74
qzj

Theorem 5.4.1 (Strassmann). Let f “
ř

iě0 aiz
i be a power series with ai P Zp such that

lim ai “ 0. Let k “ min νppaiq and let

N “ max tj νppajq “ ku

Then, the number of zeros of f in Zp is at most N .

In our case, the Theorem says that we have at most two rational points in the residue
disk of P` “ p3, 6q. It is not difficult to observe that 1 is a zero of f :
sage: f(x=K(1))

O(7^6)
this zero yields a second rational point reducing to p3, 6q in Ē : if z “ 1, then t “ 10
and therefore Q “ p10,´120q.

Repeating the argument above for the other Weierstrass residue disk, we obtain the
following table

P0
Bound on the Number of

Rational Points P ” P0 (mod 7)
Rational Points
P ” P0 (mod 7)

p3, 6q 2 p3, 6q, p10,´120q
ÿ

p3,´6q 2 p3,´6q, p10, 120q

and this gives:
EpQq Ě t8, p0, 0q, p1, 0q, p2, 0q, p5, 0q, p6, 0q, p3, 6q, p3,´6q, p10, 120q, p10,´120qu

As we have seen at the beginning of the example, #EpF7q “ 8.
Hence, applying Theorem 5.3.1.b,

10 ď #EpQq ď #EpF7q ` 2g ´ 2 “ 8` 2 ¨ 2´ 2 “ 10 ùñ #EpQq “ 10

In conclusion, we have:
EpQq “ t8, p0, 0q, p1, 0q, p2, 0q, p5, 0q, p6, 0q, p3, 6q, p3,´6q, p10, 120q, p10,´120qu

Example. Let us consider the hyperelliptic curve
E : y2

“ xpx´ 3qpx´ 4qpx´ 6qpx´ 7q

As in the previous example, the curve has genus g “ 2. Its Jacobian has now rank 0:
JpQq »

ˆ

Z
2Z

˙4

Finally, the curve has good reduction at 5; we observe that 5 ą 2r ` 2 “ 2. Hence, we
can apply Stoll’s Theorem 5.3.2:

#EpQq ď #EpF5q ` 2r “ #EpF5q
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An easy computation shows that
EpF5q “ t8, p0, 0q, p1, 0q, p2, 0q, p3, 0q, p4, 0qu #EpF5q “ 6

Hence, EpQq consists only of the 6 Weierstrass points:
EpQq “ t8, p0, 0q, p3, 0q, p4, 0q, p6, 0q, p7, 0qu

We want to conclude this section with an example where Coleman method is not
sufficient to write a complete list of rational points.
Example. Consider the hyperelliptic curve

C : y2
“ x5

` 4x4
´ x2

` 1

This is a genus 2 curve, with good reduction at 5, whose Jacobian has rank 1.
We reduce the curve over F5: y2 “ x5 ` 4x4 ` 4x2 ` 1:

x P F5 0 1 2 3 4
x5 P F5 0 1 2 3 4 y P F5 0 1 2 3 4

4x4 P F5 0 4 4 4 4 y2 P F5 0 1 4 4 1
4x2 P F5 0 4 1 1 4

x5 ` 4x4 ` 4x2 ` 1 P F5 1 0 3 4 3

and we find
CpF5q “

!

8, p0, 1q, p0, 4q, p1, 0q, p3, 2q, p3, 3q
)

ùñ #CpF5q “ 6

Using Theorem 5.3.1, we have the following bound on the number of rational points:
#CpQq ď 8

p0, 1q and p0, 4q lift respectively to p0, 1q and p0,´1q in CpQq but the other 3 points have
no obvious lift.

x is a local coordinate on the residue disk of p0, 1q:
1

y
“

1
a

F pxq
“ 1`

1

2
x2
´

13

8
x4
´

1

2
x5
´

43

16
x6
´

3

4
x7
`

323

128
x8
`

33

16
x9
`Opx10

q

Again we compute the two Coleman integrals
a “

ż p0,1q

8

dx

2y
b “

ż p0,1q

8

x
dx

2y

and we define the differential α “ bω0 ´ aω1. Following the method of Coleman, we
integrate α between p0, 1q and a generic point pt, sq living in the same residue disk of
p0, 1q. Noticing that t ” 0 mod 5, t can be written as 5z (for z P Z5) and so we get
the function

fpzq “ b ¨ p5zq ´
a

2
¨ p5zq2 `

b

6
¨ p5zq3

a

8
¨ p5zq4 ´

13b

40
¨ p5zq5 ` . . .

Substituting the exact values of a and b we find
fpzq “ p4 ¨ 52

` 3 ¨ 53
`Op54

qqz ` p2 ¨ 52
` 3 ¨ 53

`Op54
qqz2

`
ÿ

jě3

Op54
qzj

Now we apply Strassmann Theorem 5.4.1 and we see that in the residue disk of p0, 1q
there are at most two rational points. The second one is given by `

´15
4
,´193

32

˘. In the
same way we find `

´15
4
, 193

32

˘ in the residue disk of p0,´1q.
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Question. How can we study the residue disks of p1, 0q, p3, 2q and p3, 3q?

We have still not used Theorem 5.3.1.a: we consider again our differential α:
α “

“

´
`

5` 52
` 53

`Op55
q
˘

`
`

1` 3 ¨ 5` 4 ¨ 52
` 4 ¨ 53

` 2 ¨ 54
`Op55

q
˘

x
‰ dx

2y

We have to study the order of vanishing of the reduction α of α modulo 5. Notice that
α “

x

2y
dx

We list the order of vanishing of α at the elements in CpF5q in the following table:
Q p0, 1q p0, 4q p1, 0q p3, 2q p3, 3q 8

ordQα 1 1 0 0 0 0

By Theorem 5.3.1.a, we can say that in the residue disks given by the preimages of
p1, 0q, p3, 2q and p3, 3q there is at most one rational point.

First of all we observe that, by Hensel’s Lemma, the residue class of p1, 0q contains
one Weierstrass point W . This is defined over Q5 but it is not rational. With an easy
computation in SAGE we can find that

W ” p1` 5` 2 ¨ 52
` 3 ¨ 53

` 54
` 3 ¨ 55

` 3 ¨ 56
`Op57

q , 0q

sage: R.<x> = QQ[’x’]
sage: E = HyperellipticCurve(x^5+4*x^4-x^2+1)
sage: K = Qp(5 ,10); EK = E.change_ring(K)
sage: EK.weierstrass_points ()

It only remains to study the residue disks of p3, 2q and p3, 3q.
As noticed before, Coleman method is not completely effective in this situation: we

do not have any evidence of the existence of a rational point in the remaining residue
classes. To study these disks one have to describe more in details the Jacobian of the
curve making more explicit the idea of Chabauty. Here, we only give an idea of how
this works.
Notation. We denote by J the Neron model of J (note that J “ Pic0

pC{Z5q) and by
JpQq the reduction of JpQq over F5.

The idea is to study JpQq Ď J pF5q.
Idea ([Wet, §1.8]). Suppose that we know generators for a finite index subgroup G ď

JpQq. Since the Q5-linear spaces spanned by logpGq and logpJpQqq are equal, we will
often be able to determine the generators of V “ AnnpJpQqq.

We denote G and JpQq the images of G and JpQq under the reduction map. If the
index of G in JpQq is coprime to the order of J pF5q, then G “ JpQq.

Let P P CpQ5q and let P P CpF5q be its reduction. If P P CpQq, then we see that
“

rP ´D
‰

P JpQq where D is a rational divisor of positive degree r; conversely, if
“

rP ´D
‰

R JpQq then there is no rational point in the residue class of P .
A good example of this method can be found in [Wet, Chapter 1].
In our situation, it turns out that there is no rational point in the residue disk of

p3, 2q and the same is true for the residue disk of p3, 3q. Thus,
CpQq “

"

8, p0, 1q, p0,´1q,

ˆ

´
15

4
,
193

32

˙

,

ˆ

´
15

4
,´

193

32

˙*

We notice that, in this case, the Coleman’s bound is not sharp anymore.
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