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ELLIPTIC CURVES nén

Definition

Let k be a field of characteristic # 2, 3. An elliptic curve E defined over k is
a smooth projective curve of genus 1 defined by a Weierstrass equation

E:Y?2Z=X%+aXZ?+0b23
where a, b € k are such that 4a® + 2762 + 0.

In general we work with the affine equation of E, i.e., E : y?> = 2% + ax + b.
We distinguish the point O = (0 : 1 : 0) (called point at infinity).

There is a way of adding points on E based on Bezout’s theorem (we fix the
point O and we define the sum of three co-linear points to be O). This law

endows the set of k-rational points with a group structure where O plays the role
of identity element. We write E(k).
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ISOMORPHISMS OF ELLIPTIC CURVES

Isomorphisms

ol

An isomorphism of elliptic curves is an invertible morphism of algebraic
curves (admissible linear change of variables). They are of the form

(z,y) — (uz,uPy) for some u € k.

Isomorphisms between elliptic curves are group isomorphisms.

Isomorphism classes are described by an invariant:

The j-invariant of an elliptic curve E : y? = 23 + ax + b is
4a3
(F) = 17284—————
IE) = 1728 o e

Two elliptic curves E, E’ are isomorphic over k if and only if j(E) = j(E’).
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GROUP STRUCTURE h%l

Let E be an elliptic curve defined over a field k£ and m an integer. The m-torsion
subgroup of E'is

Elm|={P € E(k) |mP =0}

Torsion structure

Let E be an elliptic curve defined over an algebraic closed field k of charac-
teristic p. If p does not divide m or p = 0, then

VA VA
Elm]~ 2 x5

If the p > 0, then

L .
B~ {77 Ordinary case
{O}  Supersingular case
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ISOGENIES h%l

They are relationships between isomorphisms classes of elliptic curves.
Anisogeny ¢ : E — E’ between two elliptic curves is
» Amap E — E’ such that ¢(P + Q) = ¢(P) + ¢(Q).
» A surjective group morphisms (in the algebraic closure).
» A group morphism with finite kernel.

» A non-constant algebraic map of projective varieties such that
$(Op) = Op.
» An algebraic morphism given by rational maps

_ fl(x,y) fZ(xay)
#lev) = (gl(x,y)’ gg(x,y))

The first example of isogeny is the multiplication by » map: [n] : E — E.
If k = F, we also have the Frobenius morphism 7 : (x,y) — (29, y?).

4%
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ATTRIBUTES OF ISOGENIES

Let ¢ : E — E’ be an isogeny defined over a field k, char(k) = p.
Definitions
» The degree of ¢ is defined to be deg ¢ = [k (E) : ¢*k (E")].

> ¢ is said separable, inseparable or purely inseparable if the
corresponding extension of function fields is.

> If ¢ is separable then deg ¢ = #ker ¢.

» Given any isogeny ¢ : E — E’ there always exists a unique isogeny
¢ : E' — E, called the dual isogeny, such that

$od=ldeggl,, ¢o¢=/degg],

5%
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THEOREMS ON ISOGENIES

Theorem

For every finite subgroup G C E (k) there exist a unique (up to isomorphism)
elliptic curve E” = E/G and a unique separable isogeny E — E’ of degree
#G. Further, any separable isogeny arises in this way.

Given G, Velu’s formulee enables one to find explicit description for ¢.

Theorem (Tate)

Two elliptic curves E and E’ defined over a finite field & are isogenous over
kifand only if #E(k) = #E’ (k).

Observe that there exists an algorithm (Schoof - 1985) which, using isogenies,
compute the cardinality of E in polynomial time.
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ENDOMORPHISMS h%l

An endomorphism of an elliptic curve E is an isogeny from E to itself.

Endomorphism ring

The endomorphism ring End(E) = End;(E) of an elliptic curve E/k is the

set of all endomorphisms of E (together with the 0-map) endowed with sum
and multiplication

The endomorphism ring always contains a copy of Z in the form of the
multiplication by m maps.

If £ is a finite field we also have the Frobenius endomorphism.

)
7
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THEOREMS ON ENDOMORPHISMS %A

Let E be an elliptic curve defined over a finite field k. End(E) has dimension
either 2 or 4 as a Z-module.

Theorem (Deuring)

Let E/k be an elliptic curve over afinite field k of characteristic p > 0. End(E)
is isomorphic to one of the following:

» An order O in a quadratic imaginary field; we say that E is ordinary.

» A maximal order in a quaternion algebra; we say that ' is
supersingular.

Isogenous curves are always either both ordinary, or both supersingular.

Theorem (Serre-Tate)

Two elliptic curves E, and E; defined over a finite field & are isogenous if and
only if End(E,) ®, Q ~ End(E;) ®; Q.
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ISOGENY GRAPHS h%l

Definition

Given an elliptic curve E over k, and a finite set of primes S, we can associate
an isogeny graph T’ = (E, S)

» whose vertices are elliptic curves isogenous to E over k, and
» whose edges are isogenies of degree £ € S.

The vertices are defined up to k-isomorphism (therefore represented by
J-invariants), and the edges from a given vertex are defined up to a
k-isomorphism of the codomain.

If S = {¢}, then we call T an ¢-isogeny graph.

The ¢-isogeny graph of E'is (¢ + 1)-regular (as a directed multigraph). In
characteristic 0, if End(E) = Z, then this graph is a tree.

Y
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ORDINARY ISOGENY GRAPHS: VOLCANOES EA

Let End(E) = O C K. The class group CI(0) acts faithfully and transitively on the
set of elliptic curves with endomorphism ring O:

E — E/FE]a] Ela]={P€ E|a(P)=0Va€ a}

Thus, the CM isogeny graphs can be modelled by an equivalent category of
fractional ideals of K.

End(E)
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STRUCTURE OF VOLCANOES %A

Let E and E’ be to elliptic curves with endomorphism rings @ and ¢’
respectively and let ¢ : E — E’ be an £ isogeny.

» If @ = @ we say that ¢ is horizontal;

» If [0 : O] = £ we say that ¢ is ascending;
» If [0 : O] = ¢ we say that ¢ is descending.
Crater

The crater consists of h(Ox) = #C(O) Elliptic curves. Depending on the
behavior of £ in O, we can have one or multiple craters:

(B--1 (-0 (3) -+

The height of the volcano is v, ([0 : Z[x]]).

n
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SUPERSINGULAR ISOGENY GRAPHS %A

The supersingular isogeny graphs are remarkable because the vertex sets are
finite : there are (p + 1)/12 + ¢, curves. Moreover

» every supersingular elliptic curve can be defined over [ z;
» all £-isogenies are defined over [ 2;
» every endomorphism of E is defined over [ ..

The lack of a commutative group acting on the set of
supersingular elliptic curves/FF . makes the isogeny
graph more complicated.

For this reason, supersingular isogeny graphs have
been proposed for

» cryptographic hash functions (Goren—-Lauter),

» post-quantum SIDH key exchange protocol.
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ORDINARY PROTOCOL - COUVEIGNES & ROSTOVTSEV-STOLBUNOV, 2006 [Ny %A

Fix a large enough finite field [, of large characteristic p and an ordinary elliptic
curve E,/F, such that its Frobenius discriminant D, = ¢* — 4¢ contains a large
enough prime factor.

Consider a set of primes £ = {{,, ..., ¢,,} such that (%) =1.

Ay

% Ix M X
NP~
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ORDINARY PROTOCOL - COUVEIGNES & ROSTOVTSEV-STOLBUNOV, 2006 [Ny %A

Fix a large enough finite field [, of large characteristic p and an ordinary elliptic
curve E,/F, such that its Frobenius discriminant D, = ¢* — 4¢ contains a large
enough prime factor.

Consider a set of primes £ = {{,, ..., ¢,,} such that (%) =1.

[
[ ] [ ]
L= {[17 [27 [3}
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ORDINARY PROTOCOL - COUVEIGNES & ROSTOVTSEV-STOLBUNOV, 2006 [Ny %A
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enough prime factor.
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[
[ ] [ ]
L= {[17 [27 [3}
[ (]
Alice
a=02l;!
[ ] [
([ ] o
([
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ORDINARY PROTOCOL - COUVEIGNES & ROSTOVTSEV-STOLBUNOV, 2006 [Ny %A
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curve E,/F, such that its Frobenius discriminant D, = ¢* — 4¢ contains a large
enough prime factor.
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]
] (]
’C = {[17 [27 [3}
[ J
Alice
pa=(2,1,-1) ° E,
a=oE!
[ ] o
o { ]
[ J
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ORDINARY PROTOCOL - COUVEIGNES & ROSTOVTSEV-STOLBUNOV, 2006 [Ny %A
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ORDINARY PROTOCOL - COUVEIGNES & ROSTOVTSEV-STOLBUNOV, 2006 [Ny %A

Fix a large enough finite field [, of large characteristic p and an ordinary elliptic
curve E,/F, such that its Frobenius discriminant D, = ¢* — 4¢ contains a large
enough prime factor.
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(
[
L= {[17 [27 [3}
o
Alice
PA = (2717_1) EO
a=12R?
o o
([ J ( J
o
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ORDINARY PROTOCOL - COUVEIGNES & ROSTOVTSEV-STOLBUNOV, 2006 [Ny %A
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(
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PA = (2717_1)
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ORDINARY PROTOCOL - COUVEIGNES & ROSTOVTSEV-STOLBUNOV, 2006 [Ny %A
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o
o [
L= {[17 [27 [3}
® o
Alice Bob
pa=(21,-1) ® .EO pp = (—2,0,1)
a= 2R a= 1"l
o o
([ (
o
EA
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ORDINARY PROTOCOL - COUVEIGNES & ROSTOVTSEV-STOLBUNOV, 2006 [Ny %A

Fix a large enough finite field [, of large characteristic p and an ordinary elliptic
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Ega °
[ ]
L= {[17 [27 [3}
Alice Bob
pa=(21,-1) ® pp=(—2,0,1)
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ORDINARY PROTOCOL - COUVEIGNES & ROSTOVTSEV-STOLBUNOV, 2006 [Ny %A
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ORDINARY PROTOCOL - COUVEIGNES & ROSTOVTSEV-STOLBUNOV, 2006 [Ny %A

Fix a large enough finite field [, of large characteristic p and an ordinary elliptic
curve E,/F, such that its Frobenius discriminant D, = ¢* — 4¢ contains a large
enough prime factor.

Consider a set of primes £ = {{,, ..., ¢,,} such that (%) =1.

Ega )
o o
L= {[17 [27 [3}
[ ) [ )

Alice Bob
pa=(21,-1) ® .EO pp = (—2,0,1)
a= 2R a= 1"l
[ ) [ )

Eg
0\}\_. ]
E,

OSIDH | Séminaire IAA - 09 Mar. 2021




ORDINARY PROTOCOL - COUVEIGNES & ROSTOVTSEV-STOLBUNOV, 2006 [Ny %A
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ORDINARY PROTOCOL - COUVEIGNES & ROSTOVTSEV-STOLBUNOV, 2006 [Ny %A
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I
SIDH - L. DE FE0 6 0. JAD, 201 ol

» Fix two small primes £, and ¢;
» Choose a prime p suchthatp +1 = Kjﬁ%ffor a small correction term f;

» Pick a random supersingular elliptic curve E/F .: E ([sz) = (ﬁf

» Alice consider E[(%4] = (P4, Q 4) while Bob takes E [¢%] = (P, Qp).
» SecretData: R, = m P, +n, Q4 and Rg = mpgPp +ngQp.
» Private Key: isogenies ¢, : E — E, = E/E(R,) and
¢p: E — Ep = E/E(Rp).
» Shared Data: £, ¢, (Pp), 94(@p) and Ep, ¢p(Py), dp(Q4)-
> Shared Key: E/E(R,, Rp) = Ep/{¢p(R4)) = Ea/{0a(Rp)).

,#a(Pp)
yENRM ¢A<QB>\g
B L E/(Ra, )
e b S
¢p(Pa)
E/(Rp) ?5(Qa)

D
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CSIDH - CASTRYCK, LANCE, MARTINDALE, PANNY & RENES, 2018 ol

It is an adaptation of the Couveignes—Rostovtsev-Stolbunov scheme to
supersingular elliptic curves.

Commutative Supersingular isogeny Diffie-Hellman

> Fixaprimep=4-¢; -...- ¢, — 1 for small distinct odd primes #;.

» The elliptic curve E, : y? = 23 + x/[Fp is supersingular and its
endomorphism ring restricted to [, is O = Z [r] (commutative).

» Al Montgomery curves E, : y* = x* + Az® + z/F, that are
supersingular, appear in the C4(0)-orbit of E,, (easy to store data).

» Private Key: it is an n-tuple of integers (e, ..., ;) sampled in a range
{—m,...,m} representing an ideal class [a] = [I}* - ... - [;*] € &(0)
where [, = (¢;, ™ — 1).

» Public Key: The Montgomery coefficients A of the elliptic curve
Ey=la-Ey:y* =23+ Az? + z.

» Shared Key: If Alice and Bob have private key (a, A) and (b, B) then
they can compute the shared key E 45 = [a] [b] - Ey = [b] [a] - E.
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MOTIVATING 0SIDH ﬁ

The constraint to [,-rational isogenies can be interpreted as an orientation of the
supersingular graph by the subring Z[=] of End(E) generated by the Frobenius
endomorphism 7.

We introduce a general notion of orienting supersingular elliptic curves and their
isogenies, and use this as the basis to construct a general oriented supersingular
isogeny Diffie-Hellman (OSIDH) protocol.

» Generalize CSIDH.

» Key space of SIDH: in order to have the two key spaces of similar size,
we need to take £ ~ 0~ /p- This implies that the space of choices
for the secret key is limited to a fraction of the whole set of supersingular
J-invariants over F ..

» A feature shared by SIDH and CSIDH is that the isogenies are
constructed as quotients of rational torsion subgroups. The need for
rational points limits the choice of the prime p
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ORIENTATIONS nén

Let O be an order in an imaginary quadratic field K. An O-orientation on a
supersingular elliptic curve E is an inclusion ¢ : @ < End(E), and a K-orientation
is an inclusion « : K < End’(F) = End(E) ®, Q. An @-orientation is primitive if
O ~End(F)NuK).
Theorem

The category of K-oriented supersingular elliptic curves (E, ¢), whose mor-
phisms are isogenies commuting with the K-orientations, is equivalent to the
category of elliptic curves with CM by K.

Let ¢ : E — Fbe an isogeny of degree /. A K-orientation . : K < End’(E)
determines a K-orientation ¢, (.) : K < End’(F) on F, defined by

6.()(0) = 7 doula) o6,

Conversely, given K-oriented elliptic curves (E, 1) and (F, 1) we say that an
isogeny ¢ : E — F'is K-oriented if ¢, (1) = ¢, i.€., if the orientation on F'is
induced by ¢.

mn
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CLASS GROUP ACTION nén

» SS(p) = {supersingular elliptic curves over Fp up to isomorphism}.
» SSy(p) = {0U-oriented s.s. elliptic curves over F,, up to K-isomorphism}.

» SSI(p) =subset of primitive ¥-oriented curves.
The set SS,(p) admits a transitive group action:
&(O) x 8Sp(p) — SSy(p) (o], E) /—— [a] - E = E/E[q]

The class group €(O) acts faithfully and transitively on the set of O-
isomorphism classes of primitive @-oriented elliptic curves.

In particular, for fixed primitive @-oriented E, we obtain a bijection of sets:
&0) — SSI(p) [a] —— [a] - E

For any ideal class [a] and generating set {qy, ..., q,.} of small primes, coprime to
[0k = O], we can find an identity [a] = [q5* - ... - g+"], in order to compute the

action via a sequence of low-degree isogenies. -
18
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ORIENTATION- AN EXAMPLE %A

Example. p = 71, ¢ = 2, elliptic curves with j = 0 oriented by Oy = Z[w],
WwW+w+1=0.

The orientation by K = Q(w) differentiates vertices in the descending paths from
E,, determining an infinite graph:
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FORGETFUL MAP h%l

We have a bijection (isomorphism of sets with &/(©)-action):
C(O) =SS (0) C SSy(p)
On the other hand, the inclusion O, ; C O, determines an inclusion

SSp,(p) C S8y, (p) =SSy, (p) U SS@C+1 (p)
\
SSy,.(p) €SSy, (p) C -+ CSSy (p) C -

equipped with forgetful maps

When the map SS,, (p) — SS(p) and its restriction to SS‘(';: (p) are injective?
When are they surjective?

oo

OSIDH | Séminaire IAA - 09 Mar. 2021




FORGETFUL MAP - FinsT RESULTS é

Let O be an imaginary quadratic order of discriminant A and p a prime which
isinertin O. If |A| < p, then the map SS,(p) — SS(p) is injective.

p=1013 p = 1019
O) V||| X[ H(p)| A R(O) Y I[IX1 | H(p)| A
1 111 85 [0.3590 1 111 86 |0.3587
2 2 | 3 | 85 |0.5593 2 2| 3 | 86 |0.5588
4 4
8 8

4 | 7 | 85 |0.7596 4 | 7 | 86 |0.7590
8 |15 | 85 |0.9599 8 |15 | 86 |0.9591
16129 | 85 |1.1603 15130 | 86 |1.1593
32 |26|47 | 85 |1.3606 32 |29]49 | 86 |1.3594
64 |43|66 | 85 |1.5609 64 |46|69 | 86 |1.5595
128 | 70| 82 | 85 |1.7612 128 |64 |81 | 86 [1.7597
256 | 79|85 | 85 |1.9615 256 | 83|84 | 86 |1.9598
83|85 | 85 |2.1618 86|86 | 86 |2.1600

O© OO NO O~ WN ==
—
(0}

O O~NO O~ WN ==
-
(®))

—
(@]
(@)
'y
N
-
(@)
(@)
'y
N
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ISOGENY CHAINS LCULD

Definition

An ¢-isogeny chain of length n from E,, to E is a sequence of isogenies of
degree ¢:

%o (0 2 Pn1
Ey—FE —FEy,— .. —E =FE.
The ¢-isogeny chain is without backtracking if ker (¢, © ¢;) # E;[(], ¥
The isogeny chain is descending (or ascending, or horizontal) if each qb is
descending (or ascending, or horizontal, respectively).

The dual isogeny of ¢, is the only isogeny ¢, ; satisfying ker (¢, o ¢;) = E;[{].
Thus, an isogeny chain is without backtracking if and only if the composition of
two consecutive isogenies is cyclic.

Lemma

The composition of the isogenies in an ¢-isogeny chain is cyclic if and only if
the ¢-isogeny chain is without backtracking.
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PUSHING ISOGENIES ALONG A CHAIN %A

Suppose that (E;, ¢,) is an £-isogeny chain, with E, equipped with an
O -orientation ¢ : O — End(E}).

For each i, ¢; : K — End"(E;) is the induced K-orientation on E;,. Write
O, = End(E;) N ¢;,(K) with Oy = O .

If g is a split prime in O over g # ¢, p, then the isogeny
Yo+ By = Fy = Ey/Eq [q]
can be extended to the ¢-isogeny chain by pushing forward C;, = E [q]:
Co=Epla], Cy = ¢(Cy), .., Cp = 1(Cry)

and defining F; = E;/C,.

E,_1/Cici = Fiy 0 F,=FE;/C;
o——©0
%‘—1}1 %Wq
Pi—1

- .

Cio1 CEiy ¢ E; O C;
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LADDERS ol

Definition

An ¢-ladder of length n and degree ¢ is a commutative diagram of £-isogeny
chains (E;, ¢;), (F;, ¢;) of length n connected by g¢-isogenies 1, : E;, — F;,

E E E FE,
.0 o .1 1 .2 2 Pn-1 o
Illol 1/)1[ 1/}% d]nl
([ 7 o 7 ([ 7 7 [ ]
Fo %0 F &} F, % n—1 [

n

We also refer to an £-ladder of degree ¢ as a ¢-isogeny of ¢-isogeny chains.

We say that an ¢-ladder is ascending (or descending, or horizontal) if the
£-isogeny chain (E;, ¢,) is ascending (or descending, or horizontal, respectively).

We say that the ¢-ladder is level if 1), is a horizontal g-isogeny. If the ¢-ladder is
descending (or ascending), then we refer to the length of the ladder as its depth
(or, respectively, as its height).

‘ 24 X
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[
0SIDH - INTRODUCTION coLoff

We consider an elliptic curve E,, with an effective endomorphism ring (eg.
Jo = 0,1728) and a chain of ¢-isogenies.

')
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[
0SIDH - INTRODUCTION coLoff

We consider an elliptic curve E,, with an effective endomorphism ring (eg.
Jo = 0,1728) and a chain of /-isogenies.

» For ¢ = 2 (or 3) a suitable candidate for O could be the Gaussian integers
Z[i] or the Eisenstein integers Z[w].

OKQE/

')

OSIDH | Séminaire IAA - 09 Mar. 2021




OSIDH - INTRODUCTION

We consider an elliptic curve E,, with an effective endomorphism ring (eg.

Jo = 0,1728) and a chain of /-isogenies.
» Horizontal isogenies must be endomorphisms

OSIDH | Séminaire IAA - 09 Mar. 2021
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OSIDH - INTRODUCTION

We consider an elliptic curve E,, with an effective endomorphism ring (eg.

Jo = 0,1728) and a chain of /-isogenies.
» We push forward our g-orientation obtaining F3.

I
EQ/
(]
£
El/
[ )

o8N
N

Ey
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OSIDH - INTRODUCTION

We consider an elliptic curve E,, with an effective endomorphism ring (eg.

Jo = 0,1728) and a chain of /-isogenies.
» We repeat the process for Fj,.
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[
0SIDH - INTRODUCTION coLoff

We consider an elliptic curve E,, with an effective endomorphism ring (eg.
Jo = 0,1728) and a chain of /-isogenies.

» And again till F,,.

')
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HOW MANY STEPS BEFORE THE IDEALS ACT DIFFERENTLY? (e %A

q
Ey® o1 ek,
q Eyo
RS N

E! # E! ifand only if g2 N O, is not principal and the probability that a random
ideal in O, is principal is 1/h(0;). In fact, we can do better; we write Oy = Z[w]
and we observe that if g% was principal, then

> = N(q?) = N(a + bliw)
since it would be generated by an element of 0, = Z + ¢ . Now

N(a + bl%) = a® + abtl! + b*s¢**  where w? +tw+s=0

Thus, as soon as 2% >> ¢2, we are guaranteed that g2 is not principal.

o
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I
OSIDH - INTRODUCTION & MODULAR APPROACH ool

If we look at modular polynomials ®,(X,Y) and ®,(X,Y") we realize that all we
need are the j-invariants:
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I
OSIDH - INTRODUCTION & MODULAR APPROACH ool

If we look at modular polynomials ®,(X,Y’) and ®,(X,Y") we realize that all we
need are the j-invariants:

Since j, is given (the initial chain is known) and supposing that j; has already
been constructed, j; is determined by a system of two equations

o
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AFIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of ¢-isogenies £y — E; — ... = E,,
ALICE BOB

‘ 28 k
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AFIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of ¢-isogenies By — E; — ... = E,,

ALICE BOB
Choose a primitive Lo Lo
O i--orientation of CE\\ QE\\

E, j28 e

e
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AFIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of ¢-isogenies By — E; — ... = E,,

ALICE BOB
Choose a primitive Lo Lo
O i--orientation of CE\\ QE\\

E, j28 e

Push it forward to

depth n Ey=F—F —..—F, E=G—-G —..—G,

ba B

e
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AFIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of ¢-isogenies By — E; — ... = E,,

ALICE BOB
Choose a primitive Lo Lo
O i--orientation of CE\\ QE\\

E, j28 e

Zg;?hngomard to Ey=F,—»F —..»F, E,=G,—G —..—=G,
b4 B

Exchange data ><
{Gi}i, {Fi}i

e
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AFIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of ¢-isogenies By — E; — ... = E,,

ALICE BOB
Choose a primitive Lo Lo
O i--orientation of CE\\ QE\\

E, j28 e

Push it forward to Ey=F,—»F —..»F, E,=G,—G —..—=G,

depth n
¢A ¢B
Exchange data ><
{Gihin {Fi Y
Compute shared Compute ¢4 - {G;} Compute ¢ - {F;}

secret

e
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AFIRST NAIVE PROTOCOL

PUBLIC DATA: A chain of ¢-isogenies By — E; — ... = E,,

ALICE BOB
Choose a primitive Lo Lo
O i--orientation of CE\\ QE\\

E, j28 e

Push it forward to Ey=F,—»F —..»F, E,=G,—G —..—=G,

depth n
¢A ¢B
Exchange data ><
{Gihin {Fi Y
Compute shared Compute ¢4 - {G;} Compute ¢ - {F;}

secret
In the end, Alice and Bob will share a new chain £, - H, — ... —» H,

e
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GRAPHIC REPRESENTATION




GRAPHIC REPRESENTATION




GRAPHIC REPRESENTATION

Ey I.‘FO
E1—|—>-F1




GRAPHIC REPRESENTATION
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GRAPHIC REPRESENTATION
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I
AFIRST NAIVE PROTOCOL - WeAKNESS ol
In reality, sharing (F;) and (G,) reveals too much of the private data. '
From the short exact sequence of class groups:
— O/t OK)X — CO) = C(O)) =1
O (2/677)
an adversary can compute successive approximations (mod ¢) to ¢ , and ¢
E,

modulo ™ hence in 4(0).
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|
AN EXAMPLE: COMPUTE SUCCESSIVE APPROYIMATIONS Lcowof

Take ¢ = p* = 100072, E : y* = x* 4 1 of j-invariant 0 is supersingular over [ ,.
We orient £, by Oy = Z|w] < End(E,) where w? + w + 1.

‘31 \
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I
AN EXAMPLE: COMPUTE SUCCESSIVE APPROIMATIONS ool

r
!
!

Algorithm. Action of an ideal [(¢, a + bl'w)] € CU(Z + ('O ) lying over g on the !

' set of primitive ¥-oriented elliptic curves SS})" (p).

Input: The j-invariants of two elliptic curves £ and E’ over [ . known to be
@-is0genous.
Output: The ideal [a] € {[q], [q]} such that [a] * j(E) = j(E’).

1. Compute g-division polynomial v, (). i
2. Factor v, () and find the factor f(z) corresponding to the desired isogeny |
¢:E— FE. 1

3. Pick aroot of f, i.e., a g-torsion point Plying in the kernel of ¢. |
4. Set mO = qq = (q,a + bllw)(g,a’ + b’ liw). |
5. If [a] P+ [b] - [('w] P = O |
Return g. |

Else
Return q.

‘ 31 X
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AN EXAMPLE: COMPUTE SUCCESSIVE APPROYIMATIONS

The action of £‘w on E; will be given by the composition

¢i—1°"'°¢2°¢1°¢0°[W]°¢;0°(51°€£2°"'°Q§1—1

‘31 \
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I
AN EXAMPLE: COMPUTE SUCCESSIVE APPROIMATIONS ool

Observe that this is exactly the definition of orientation by @, transmitted to E;
along the isogeny Ey — E;, — Ey — ... = E;.

‘31 \
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THE ALGORITHM LCOLO

I
2
M

Computing successive approximations

We are given two sequences {E; }* , and {F;}? ,. Suppose that E; = F; for
alls < m; there are [ possibilities for F,,, ,;, and we need to find g € End(O )
such that

1. B=1mod ¢™ sothat B, E; = F; = E; for all i < m;
2. B*Eerl = Fm+1;

3. [is smooth with small exponents (n order to determine the action of
modulo ¢™*1 effectively).

Once that we have constructed « such that o, E; = F; forall m < ¢ < k,
then we can substitute 1 with

1. B=amod ¢* sothat B,E,,; = Fj.;.

‘ 32 X
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TOWARDS A MORE SECURE 0SIDH PROTOCOL

How can we avoid this while still giving the other enough information?

Instead Alice and Bob can send only F' = F,, and G = G,,.

Problem Once Alice receives the unoriented curve G,, computed by Bob she
also needs additional information for each prime p;:

Bob’s curve
G,

- - [ - -
Horizontal p,-isogeny Horizontal p,-isogeny
with kernel G, [p;] with kernel G, [p;]

In fact, she has no information as to which directions — out of p, 4 1 total
p,;-isogenies — to take as p; and p,.

Solution They share a collection of local isogeny data (£}, [q,]) and (G, [q,])
which identifies the isogeny directions (out of g; + 1) for a system of small split
primes (q,) in O k-

‘ 33 X
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OSIDH PROTOCOL h%l

PUBLIC DATA: A chain of ¢-isogenies E, — E; — ... — E,, and a set of
splitting primes p,,....p, CO CEndE, N K C Oy
ALICE BOB

34
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OSIDH PROTOCOL h%l

PUBLIC DATA: A chain of ¢-isogenies E, — E; — ... — E,, and a set of
splitting primes p,,....p, CO CEndE, N K C Oy
ALICE BOB

(e1,...5€;) (dy,...,d,;)

Choose integers
in a bound [—r, 7]

34
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OSIDH PROTOCOL h%l

PUBLIC DATA: A chain of ¢-isogenies E, — E; — ... — E,, and a set of
splitting primes p,,....p, CO CEndE, N K C Oy

ALICE BOB
Choose integers (e e,) (d d,)
Inabound [_T’rr-} 194256 1y eee s Uy
Construct an F,=E, /B, [p>p] G,=E,/E, [Pill ...p;lt]

isogenous curve

34
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OSIDH PROTOCOL h%l

PUBLIC DATA: A chain of ¢-isogenies E, — E; — ... — E,, and a set of
splitting primes p,,....p, CO CEndE, N K C Oy

ALICE BOB
Choose integers
in a bound [—r, 7] (€1,--€) (dy, ... d,)
Construct an B o e B P
isogenous curve F,=E,/E, [p{" p;'] G, =E,/E, [p* p!"]
Precompute all FEDe R pO R, GG e ca,

directions V3 ™

34
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OSIDH PROTOCOL h%l

PUBLIC DATA: A chain of ¢-isogenies E, — E; — ... — E,, and a set of
splitting primes p,,....p, CO CEndE, N K C Oy

ALICE BOB

Choose integers (e ) ” 0
in a bound [—r, 7] IERERR 1rees dy
Construct an
' F,=E,/E,[p}' ¥l G, =E,/E, [p{" ~p{']
isogenous curve
Plreoo'mpute. all FEDe FCT e o PO R, G e,
directions Vi
.. and their - . N o

. HF a %F %Fn 1 G, —G, i —.—=G, =G
conjugates , , , )

34
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OSIDH PROTOCOL

ool

PUBLIC DATA: A chain of ¢-isogenies E, — E; — ... — E,, and a set of

splitting primes p4, ...

9, COCENdE, NK C O

Choose integers
in a bound [—r, 7]
Construct an
isogenous curve
Precompute all
directions Vi

... and their
conjugates
Exchange data

ALICE BOB
(el’..”et) (dl,o.a,dt)
e e, d d,
Fn - En/E” [pll Py ] Gn = En/En [pll Py ]
F(*T)HF(*(#I)FM(?F(I)_FF" G(it)FG(‘H&DH...(—G(I),eGn

FnaFfb{la...aFﬁﬁl)%Fﬁm GnaG(T}?ia...%G(rffil)%Gg}l

Gn+directions><Fn +directions
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OSIDH PROTOCOL

ool

PUBLIC DATA: A chain of ¢-isogenies E, — E; — ... — E,, and a set of

splitting primes p4, ...

0, COCENdE, N K C O

Choose integers
in a bound [—r, 7]
Construct an
isogenous curve
Precompute all
directions Vi

... and their
conjugates
Exchange data

Compute shared
data

ALICE BOB
(61,...,€t) (dl"“,dt)
d d
Fn :En/En [pil"'p:t] Gn :En/En [pll"'ptt]
File R T e «FDeF, GG T e Gl G,
F,LAFSLH...%FX;I)%Fﬁm GHHG(;L*}...%G:;U%GQLTL
Gn+directiM+direotions
Takes e, steps in Takes d, steps in
p,-isogeny chain & push p;-isogeny chain & push
forward information for forward information for
j> . j> .

(@)

OSIDH | Séminaire IAA - 09 Mar. 2021




OSIDH PROTOCOL

ool

PUBLIC DATA: A chain of ¢-isogenies E, — E; — ... — E,, and a set of

splitting primes p4, ...

0, COCENdE, N K C O

Choose integers
in a bound [—r, 7]
Construct an
isogenous curve
Precompute all
directions Vi

... and their
conjugates
Exchange data

Compute shared
data

ALICE BOB
(61,...,€t) (dl"“,dt)
d d
Fn :En/En [pil"'p:t] Gn :En/En [pll"'ptt]
FS O F T e Pl F, GG T e Gl G,
Fn*)FS}*}...*)F;TEUHFLTA GHHG(;L*}...%G:;U%G(JL
Gn+directiM+direotions
Takes e, steps in Takes d, steps in
p,-isogeny chain & push p;-isogeny chain & push
forward information for forward information for
j> . j> .

In the end, they share H,, = E,, /E,, [pf1+d1 . ~pf‘+dt]

(@)
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OSIDH PROTOCOL - GRAPHIC REPRESENTATION | é

The first step consists of choosing the secret keys; these are represented by a
sequence of integers (e, ..., ¢,) such that |e,| < r. The bound r is taken so that
the number (2r + 1)* of curves that can be reached is sufficiently large. This
choice of integers enables Alice to compute a new elliptic curve

E
F, = ﬁ
E,[py" - pi']
by means of constructing the following commutative diagram

]ﬁ“ %o ﬁo f%u ﬁo f%u
Eq . A o L L
Eolpi] Eolpy'] Eolp)'ve] Eo[py'v5] Bpleitpy ] Eoly" . py']

Ey® [ J [ J [ J [ ) [ J or
0
Ee [ J [ J [ J [ [ J [ J3}
E,® ® ® ® ® ® ol
F,’gl) Frgul) Fygul'l) ESCI‘RZ) E(Lcl‘...,ct,l) qu ..... et)

35
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OSIDH PROTOCOL - GRAPHIC REPRESENTATION I %A

Once that Alice obtain from Bob the curve G, together with the collection of data
encoding the directions, she takes e, steps in the p,-isogeny chain and push

forward all the p,-isogeny chains for ¢ > 1. o)

I
|
Ggleverl, ... @ ° 0515‘122)

T T

o= )H“;Gf&) P V¢ o o), ¢® = G
ey
Gy

36
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e
55
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G oy
E 502”
2 7348 + 50643
g 13 o pex
2 5 35 22565 -
© o 3g oo I 9992 + 53760
H g 43 b, -9 5958 + 46775
- : TN B
© 2 Rt Poe, K 29995 + ProL
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H PP o
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*o.20
a e
g N o1rL + zvet
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OSIDH PROTOCOL - AN EXAMPLE

Alice secret key: (7113

£ E

= +

< = @ .
g g 2 g 3 g
2 g g S % & o
OO0 @@ @——0—0@

38
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OSIDH PROTOCOL - AN EXAMPLE

Alice secret key: (7113
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OSIDH PROTOCOL - AN EXAMPLE

Alice secret key: (7113

38
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OSIDH PROTOCOL - AN EXAMPLE

Alice secret key: (7113

38
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OSIDH PROTOCOL - AN EXAMPLE

Alice secret key: (7113

762 + 34710

38
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OSIDH PROTOCOL - AN EXAMPLE

Alice secret key: (7113

38
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OSIDH PROTOCOL - AN EXAMPLE

Alice secret key: (7113
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OSIDH PROTOCOL - AN EXAMPLE

Alice secret key: (7113

38
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OSIDH PROTOCOL - AN EXAMPLE

Alice secret key: (7113

38
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OSIDH PROTOCOL - AN EXAMPLE

Alice secret key: (7113

5494 + 99265
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OSIDH PROTOCOL - AN EXAMPLE

Alice secret key: (7113

5494 + 99265
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OSIDH PROTOCOL - AN EXAMPLE

Alice secret key: (7113

38
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OSIDH PROTOCOL - AN EXAMPLE

Alice secret key: [/[512

+162300— 0 —0 0 -0 -0 —0—@

> —@

b —@

D— @ 6191 + 992

11111
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OSIDH PROTOCOL - AN EXAMPLE

Alice secret key: [/[512

+162500—0—0 —0 —0 0 —0 —0 —0—0 06191+ 19260
2500 + 17640
P

11111
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OSIDH PROTOCOL - AN EXAMPLE

Bob secret key: ' 1, [

38
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OSIDH PROTOCOL - AN EXAMPLE

Bob secret key: ' 1, [
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OSIDH PROTOCOL - AN EXAMPLE

Bob secret key: ' 1, [
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OSIDH PROTOCOL - AN EXAMPLE

Bob secret key: ' 1, [

38
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OSIDH PROTOCOL - AN EXAMPLE

Bob secret key: ' 1, [

L
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OSIDH PROTOCOL - AN EXAMPLE
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OSIDH PROTOCOL - AN EXAMPLE
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CLASSICAL HARD PROBLEMS

Endomorphism ring problem

=ro—

Given a supersingular elliptic curve E/F . and m = [p], determine
1. End(E) as an abstract ring.

2. An explicit endomorphism ¢ € End(E) — Z.

3. An explicit basis B° for End’(E) over Q.

Endomorphism ring transfer problem

Given an isogeny chain E, — ... — E,, and End(E})), determine End(E,,).

Endomorphism Generators Problem

Given a supersingular elliptic curve E/F ., an imaginary quadratic order O
admitting an embedding in End(E) and a collection of compatible (O, g™)-
orientations of E for (q,n) € S, determine

1. An explicit endomorphism ¢ € O C End(E)
2. A generator ¢ of @ C End(E)
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SECURITY PARAMETERS - CHAIN LENGTH | é

Consider an arbitrary supersingular endomorphism ring Oy C B with
discriminant p2. There is a positive definite rank 3 quadratic form

disc: 0y/Z — 7

) 7 o ——— |disc(a)| = |disc (Z [o]) |
N (O) 2Z N0y

representing discriminants of orders embedding in Og;.

The general order Oy has a reduced basis 1 A a,1 A ay, 1 A ay satisfying
|disc(1 A ;)| = A, where A, ~ p?/3

(Minkowski bound: ¢;p? < A} A A, < cyp?).

In order to hide O,, in Oy we impose

lo
Al > ep?? = n=x y

so that there is no special imaginary quadratic subring in Oy = End(E,,).
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SECURITY PARAMETERS - CHAIN LENGTH I é

In order to have the action of &(Q) cover a large portion of the supersingular
elliptic curves, we require £™ ~ p, i.e., n ~ logé(p).

> #SSV (p) = h(0O,,) =class number of O, = Z + (" O.
» Class Number Formula

WZ +mOy) = mn (1- (&) 1

plm p/p
» Units
{£1} if A < —4 1 ifAg<—4
O% = § {£1, +i} fAr=—4 = [0L:0"]=<2 ifAgx=—4
{£], tw, +w?} fAxp=-3 3 fAr=-3
» Number of Supersingular curves
p
#88(p) = 15| +¢, ¢ €{0.1,2}

" 1-4m A\ 1 P "
Therefore, h({"O ) = Zor3 (1 — (71() Z) = [ﬁ} +e, = p~4L
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SECURITY PARAMETERS - DEGREE OF PRIVATE WALKS é

Suppose E = E,, and F are two generic supersingular elliptic curves. Without an
Og-module structure we have a basis Hom(E, F) = Zy, + Zyy + Ztp5 + Z1),.
A reduced basis should satisfy deg(z);) ~ /p. In order that Z) 4 is not a
distinguished submodule of Hom(E, F'), the private walk v 4 should satisfy

DN =

log (deg(vy4)) >

Again, we can think of the number of curves that we can reach: for a fixed
degree m the number of curves that can be attained is

[P (E[m])| =~ [Pt (Z/mZ)| ~

The total number of isogenies of any degree d up to m is Zm [P (E[m])| ~
but the choice of 4 is restricted to a subset of O-oriented i |sogen|es in &(0).
Such isogenies are restricted to a class proportional to m.

Consequently, to cover a subset of p* classes, we need

log, (deg(v4)) > A

m
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SECURITY PARAMETERS - PRIVATE WALKS EXPONENTS é

In practice, rather than bounding the degree, for efficient evaluation one fixes a
subset of small split primes, and the space of exponent vectors is bounded.
We choose exponents (e, ..., e,.) in the space I x ... x I, C Z" where

I; = [=mj,m;], defining ¢, with kernel E [p{* -+ p;7].

We want the map

111, — o) — ssp)

j=1
to be effectively injective - either injective or computationally hard to find a
nontrivial element of the kernel in (I; x ... x I.) Nker (Z"™ — ¢(0))

In order to cover as many classes as possible, the latter should be nearly
surjective. If the former map is injective with image of size p* in SS(p) this gives

pr <[] (2m; +1) <|@(O)| ~ ¢
j=1

for fixed m = m; this yields

n > rlog, (2m + 1) > Alog,(p)
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CONCLUSIONS n%n

By imposing the data of an orientation by an imaginary quadratic ring O, we
obtain an augmented category of supersingular curves on which the class group
C¢(0) acts faithfully and transitively.

This idea is already implicit in the CSIDH protocol, in which supersingular curves
over [, are oriented by the Frobenius subring Z[r] = Z[,/~p].

In contrast we consider an elliptic curve E;, oriented by a CM order O of class
number one. To obtain a nontrivial group action, we consider ¢-isogeny chains,
on which the class group of an order @ of large index £™ in O acts.

The map from /¢-isogeny chains to its terminus forgets the structure of the
orientation, and the original curve E;, giving rise to a generic s.s. elliptic curve.

We define a new oriented supersingular isogeny Diffie-Hellman (OSIDH) protocol,
which has fewer restrictions on the proportion of supersingular curves covered
and on the torsion group structure of the underlying curves.

Moreover, the group action can be carried out effectively solely on the sequences
of modular points (such as j-invariants) on a modular curve, thereby avoiding
expensive isogeny computations, and is further amenable to speedup by
precomputations of endomorphisms on the base curve E;.
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Future directions:
» Security analysis and setting security parameters.
» Comparison with earlier protocols.
» Implementation and algorithmic optimization.
» Forgetful map.
» Use of canonical liftings.
» Higher dimensions.
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