

MODULAR AND FORMAL ORIENTATIONS BEYOND OSIDH

CONTENTS

- Orientations and class group actions.
- ► OSIDH protocol.
- ► Adding level structure.
- ► Formal orientations.

ORIENTATIONS AND CLASS GROUP ACTIONS

ORIENTATIONS

Let \mathcal{O} be an order in an imaginary quadratic field K.

An $\mathcal{O}\text{-}orientation$ on a supersingular elliptic curve E is an embedding

$$\iota:\mathcal{O}\hookrightarrow \mathsf{End}(E).$$

A K-orientation is an embedding

$$\iota: K \hookrightarrow \operatorname{End}^0(E) = \operatorname{End}(E) \otimes_{\mathbb{Z}} \mathbb{Q}.$$

An \mathcal{O} -orientation is *primitive* if

$$\mathcal{O} \simeq \operatorname{End}(E) \cap \iota(K)$$
.

Theorem

The category of K-oriented supersingular elliptic curves (E, ι) , whose morphisms are isogenies commuting with the K-orientations, is equivalent to the category of elliptic curves with CM by K.

ORIENTATIONS - ORIENTING ISOGENIES

Let $\phi: E \to F$ be an isogeny of degree ℓ . A K-orientation $\iota: K \hookrightarrow \operatorname{End}^0(E)$ determines a K-orientation $\phi_*(\iota): K \hookrightarrow \operatorname{End}^0(F)$ on F, defined by

$$\phi_*(\iota)(lpha) = rac{1}{\ell}\,\phi\circ\iota(lpha)\circ\hat{\phi}.$$

Conversely, given K-oriented elliptic curves (E, ι_E) and (F, ι_F) we say that an isogeny $\phi : E \to F$ is K-oriented if $\phi_*(\iota_E) = \iota_F$, i.e., if the orientation on F is induced by ϕ .

ORIENTED ISOGENY GRAPHS - AN EXAMPLE

L.COLÒ †

Let p=71 and E_0/\mathbb{F}_{71} be the supersingular elliptic curve with j(E)=0 oriented by the $\mathcal{O}_K=\mathbb{Z}[\omega]$, where $\omega^2+\omega+1=0$.

The orientation by $K = \mathbb{Q}[\omega]$ differentiates vertices in the descending paths from E_0 , determining an infinite graph shown here to depth 4:

ORIENTED ISOGENY GRAPHS - YET ANOTHER EXAMPLE

We let again p=71 and we consider the isogeny graph oriented by $\mathbb{Z}[\omega_{79}]$ where ω_{79} generates the ring of integers of $\mathbb{Q}(\sqrt{-79})$.

CLASS GROUP ACTION

The set $SS_{\mathcal{O}}(\rho)$ admits a transitive group action:

$$\mathcal{C}(\mathcal{O}) \times SS_{\mathcal{O}}(\rho) \longrightarrow SS_{\mathcal{O}}(\rho)$$

$$([\mathfrak{a}], E) \longmapsto [\mathfrak{a}] \cdot E = E/E[\mathfrak{a}]$$

Proposition

The set $SS_{\mathcal{O}}^{pr}(\rho)$ is a torsor for the class group $\mathcal{C}(\mathcal{O})$.

For fixed primitive p-oriented supersingular curve E, we get bijection of sets:

$$\mathcal{C}\!\ell(\mathcal{O}) \longrightarrow \mathrm{SS}^{pr}_{\mathcal{O}}(\rho)$$

We consider an elliptic curve E_0 with an effective endomorphism ring (eg. $j_0 = 0, 1728$) and a chain of ℓ -isogenies.

We consider an elliptic curve E_0 with an effective endomorphism ring (eg. $j_0 = 0, 1728$) and a chain of ℓ -isogenies.

► For $\ell = 2$ (or 3) a suitable candidate for \mathcal{O}_K could be the Gaussian integers $\mathbb{Z}[i]$ or the Eisenstein integers $\mathbb{Z}[\omega]$.

We consider an elliptic curve E_0 with an effective endomorphism ring (eg. $i_0 = 0, 1728$) and a chain of ℓ -isogenies.

► Horizontal isogenies must be endomorphisms

We consider an elliptic curve E_0 with an effective endomorphism ring (eg. $i_0 = 0, 1728$) and a chain of ℓ -isogenies.

 \blacktriangleright We push forward our *q*-orientation obtaining F_1 .

We consider an elliptic curve E_0 with an effective endomorphism ring (eg. $j_0 = 0, 1728$) and a chain of ℓ -isogenies.

▶ We repeat the process for F_2 .

We consider an elliptic curve E_0 with an effective endomorphism ring (eg. $j_0 = 0, 1728$) and a chain of ℓ -isogenies.

▶ And again till F_n .

OSIDH

PUBLIC DATA: A chain of ℓ -isogenies $E_0 \to E_1 \to \ldots \to E_n$ and a set of splitting primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_t \subseteq \mathcal{O} \subseteq \operatorname{End}(E_n) \cap K \subseteq \mathcal{O}_K$

ALICE

BOB

PUBLIC DATA: A chain of ℓ -isogenies $E_0 \to E_1 \to \dots \to E_n$ and a set of

	$\mathfrak{p}_t \subseteq \mathcal{O} \subseteq \operatorname{End}(E_n) \cap K$	$\subseteq \mathcal{O}_K$
	ALICE	вов
Choose integers in a bound $[-r, r]$	(e_1,\ldots,e_t)	(d_1,\ldots,d_t)

PUBLIC DATA: A chain of ℓ -isogenies $E_0 \to E_1 \to \ldots \to E_n$ and a set of

splitting primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_t \subseteq \mathcal{O} \subseteq \operatorname{End}(E_n) \cap K \subseteq \mathcal{O}_K$	ALICE	
	splitting primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_t \subseteq \mathcal{O} \subseteq \operatorname{End}(E_n) \cap K \subseteq \mathcal{O}_K$	

Choose integers
in a bound $[-r, r]$
Construct an
isogenous curve

$$(e_1,\ldots,e_t)$$

$$(d_1,\ldots,d_t)$$

BOB

$$F_n = E_n/E_n \left[\mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_t^{e_t} \right]$$

$$G_n = E_n/E_n \left[\mathfrak{p}_1^{d_1} \cdots \mathfrak{p}_t^{d_t} \right]$$

PUBLIC DATA: A chain of ℓ -isogenies $E_0 \to E_1 \to \dots \to E_n$ and a set of splitting primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_t \subseteq \mathcal{O} \subseteq \operatorname{End}(E_n) \cap K \subseteq \mathcal{O}_K$

Choose integers
in a bound $[-r, r]$
Construct an
isogenous curve
Precompute all
directions ∀i

ALICE	вов
(e_1,\ldots,e_t)	(d_1,\ldots,d_t)
$F_n = E_n/E_n \left[\mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_t^{e_t} \right]$	$G_n = E_n/E_n\left[\mathfrak{p}_1^{d_1}\cdots\mathfrak{p}_t^{d_t}\right]$
$F_{n,i}^{(-r)} \leftarrow F_{n,i}^{(-r+1)} \leftarrow \dots \leftarrow F_{n,i}^{(1)} \leftarrow F_{n}$	$G_{n,i}^{(-r)} \leftarrow G_{n,i}^{(-r+1)} \leftarrow \dots \leftarrow G_{n,i}^{(1)} \leftarrow G_n$

PUBLIC DATA: A chain of ℓ -isogenies $E_0 \to E_1 \to \dots \to E_n$ and a set of splitting primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_t \subseteq \mathcal{O} \subseteq \operatorname{End}(E_n) \cap K \subseteq \mathcal{O}_K$

Choose integers
in a bound $[-r, r]$
Construct an
isogenous curve
Precompute all
directions $\forall i$
and their
conjugates

ALICE	ВОВ
(e_1,\ldots,e_t)	(d_1,\ldots,d_t)
$F_n = E_n/E_n \left[\mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_t^{e_t} \right]$	$G_n = E_n/E_n \left[\mathfrak{p}_1^{d_1} \cdots \mathfrak{p}_t^{d_t} \right]$
$F_{n,i}^{(-r)} \leftarrow F_{n,i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n,i}^{(1)} \leftarrow F_n$	$G_{n,i}^{(-r)} \leftarrow G_{n,i}^{(-r+1)} \leftarrow \leftarrow G_{n,i}^{(1)} \leftarrow G_n$
$F_n \rightarrow F_{n,i}^{(1)} \rightarrow \dots \rightarrow F_{n,i}^{(r-1)} \rightarrow F_{n,1}^{(r)}$	$G_n \rightarrow G_{n,i}^{(1)} \rightarrow \dots \rightarrow G_{n,i}^{(r-1)} \rightarrow G_{n,1}^{(r)}$

PUBLIC DATA: A chain of ℓ -isogenies $E_0 \to E_1 \to \dots \to E_n$ and a set of splitting primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_t \subseteq \mathcal{O} \subseteq \operatorname{End}(E_n) \cap K \subseteq \mathcal{O}_K$

Choose integers in a bound [-r, r]Construct an isogenous curve Precompute all directions $\forall i$... and their conjugates Exchange data

ALICE	ВОВ
(e_1,\ldots,e_t)	(d_1,\ldots,d_t)
$F_n = E_n/E_n \left[\mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_t^{e_t} \right]$	$G_n = E_n/E_n \left[\mathfrak{p}_1^{d_1} \cdots \mathfrak{p}_t^{d_t} \right]$
$F_{n,i}^{(-r)} \leftarrow F_{n,i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n,i}^{(1)} \leftarrow F_n$	$G_{n,i}^{(-r)} \leftarrow G_{n,i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n,i}^{(1)} \leftarrow G_n$
$F_n \rightarrow F_{n,i}^{(1)} \rightarrow \dots \rightarrow F_{n,i}^{(r-1)} \rightarrow F_{n,1}^{(r)}$	$G_n \rightarrow G_{n,i}^{(1)} \rightarrow \dots \rightarrow G_{n,i}^{(r-1)} \rightarrow G_{n,1}^{(r)}$
G_n +directions	F_n +directions

PUBLIC DATA: A chain of ℓ -isogenies $E_0 \to E_1 \to \ldots \to E_n$ and a set of splitting primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_t \subseteq \mathcal{O} \subseteq \operatorname{End}(E_n) \cap K \subseteq \mathcal{O}_K$

Choose integers
in a bound $[-r, r]$
Construct an
isogenous curve
Precompute all
directions $\forall i$
and their
conjugates
Exchange data

Compute shared data

ALICE

$$(e_1,\ldots,e_t)$$

$$F_n = E_n/E_n \left[\mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_t^{e_t} \right]$$

$$F_{n,i}^{(-r)} {\leftarrow} F_{n,i}^{(-r+1)} {\leftarrow} ... {\leftarrow} F_{n,i}^{(1)} {\leftarrow} F_n$$

$$F_n \to F_{n,i}^{(1)} \to \dots \to F_{n,i}^{(r-1)} \to F_{n,1}^{(r)}$$

$$G_n$$
+directions \leftarrow Takes e_i steps in \mathfrak{p}_i -isogeny chain & push forward information for

$$i > i$$
.

BOB

$$(d_1,\ldots,d_t)$$

$$G_n = E_n/E_n \left[\mathfrak{p}_1^{d_1} \cdots \mathfrak{p}_t^{d_t} \right]$$

$$G_{n,i}^{(-r)} \leftarrow G_{n,i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n,i}^{(1)} \leftarrow G_n$$

$$G_n \rightarrow G_{n,i}^{(1)} \rightarrow \dots \rightarrow G_{n,i}^{(r-1)} \rightarrow G_{n,1}^{(r)}$$

j > i.

PUBLIC DATA: A chain of ℓ -isogenies $E_0 \to E_1 \to \ldots \to E_n$ and a set of splitting primes $\mathfrak{p}_1, \ldots, \mathfrak{p}_t \subseteq \mathcal{O} \subseteq \operatorname{End}(E_n) \cap K \subseteq \mathcal{O}_K$

ALICE Choose integers (e_1,\ldots,e_t) in a bound [-r, r]

$$(e_1,\ldots,e_t)$$

 $F_n = E_n/E_n \left[\mathfrak{p}_1^{e_1} \cdots \mathfrak{p}_t^{e_t} \right]$

 $F_{n,i}^{(-r)} \leftarrow F_{n,i}^{(-r+1)} \leftarrow \dots \leftarrow F_{n,i}^{(1)} \leftarrow F_{n,i}$

 $F_n \rightarrow F_{n,i}^{(1)} \rightarrow \dots \rightarrow F_{n,i}^{(r-1)} \rightarrow F_{n,i}^{(r)}$

$$(d_1,\ldots,d_t)$$

BOB

directions ∀i

... and their conjugates

Exchange data

Compute shared

data

 G_n +directions $\stackrel{\bullet}{}$ Takes e_i steps in

p_i-isogeny chain & push forward information for

i > i. In the end, they share $H_n = E_n/E_n \left[\mathfrak{p}_1^{e_1+d_1} \cdot \ldots \cdot \mathfrak{p}_t^{e_t+d_t} \right]$

 $G_n = E_n/E_n \left[\mathfrak{p}_1^{d_1} \cdots \mathfrak{p}_t^{d_t} \right]$

 $G_{n,i}^{(-r)} \leftarrow G_{n,i}^{(-r+1)} \leftarrow \dots \leftarrow G_{n,i}^{(1)} \leftarrow G_n$

 $G_n \rightarrow G_{n,i}^{(1)} \rightarrow \dots \rightarrow G_{n,i}^{(r-1)} \rightarrow G_{n,i}^{(r)}$

 F_n +directions Takes d_i steps in

p_i-isogeny chain & push forward information for j > i.

 $\ell_1 = 13$ $\ell_2 = 31$ $\ell_3 = 43$

Alice secret key: $[15l_1^3l_2^2]$

Alice secret key: [5]312

Bob secret key: 131213

Alice secret key: $\mathfrak{l}_1^5 \mathfrak{l}_2^3 \mathfrak{l}_3^2$

Alice secret key: $\mathfrak{l}_1^5 \mathfrak{l}_2^3 \mathfrak{l}_3^2$

Alice secret key: $\mathfrak{l}_1^5 \mathfrak{l}_2^3 \mathfrak{l}_3^2$

OSIDH PROTOCOL - AN EXAMPLE

OSIDH PROTOCOL - AN EXAMPLE

OSIDH PROTOCOL - AN EXAMPLE

SECURITY CONSIDERATIONS

OSIDH PROTOCOL - SECURITY CONSIDERATIONS

For an order \mathcal{O} of conductor $\ell^n M$, we note that $\mathcal{C}(\mathcal{O}) \simeq SS_{\mathcal{O}}^{pr}(\rho)$ and define

$$I = I_1 \times \ldots \times I_t \subseteq \mathbb{Z}^t$$
 where $I_j = [-r_j, r_j]$.

The security of OSIDH depends on the following maps

$$I = \prod_{i=1}^{r} [-r_i, r_i] \longrightarrow SS_{\mathcal{O}}^{pr}(\rho) \longrightarrow SS(p)$$

We want the first map to be injective and the second one to be surjective. The attack of Dartois and De Feo exploits the non-injectivity of the map $I \to SS_{\mathcal{O}}^{pr}(\rho)$ to recover an endomorphism of E.

COUNTERMEASURES - THE USE OF NON-SPLIT PRIME

Key generation

On one side, A begins with F = E.

- ▶ Split primes: for each prime q_i in \mathcal{P}_S , choose a random $s_i \in I_i$, constructs the q_i -isogeny walk of length s_i while pushing forward the other direction as well as the q-clouds at each prime q in \mathcal{P}_A and \mathcal{P}_B .
- ► Non-split primes: for each prime choose a random walk in the cloud to a new curve *F* and push forward the remaining unused *q*-clouds.

The data F and q-isogeny chains at primes q in \mathcal{P}_s and q-clouds at primes q in \mathcal{P}_B constitute A's public key.

MOTIVATION

There are multiple reasons to add level structure to our construction:

▶ With an ℓ -level structure, the extension of ℓ -isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than $\ell+1$ extensions.

There are multiple reasons to add level structure to our construction:

- ▶ With an ℓ -level structure, the extension of ℓ -isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than $\ell+1$ extensions.
- ► The modular isogeny chain is a potentially-non injective image of the isogeny chain.

There are multiple reasons to add level structure to our construction:

- ▶ With an ℓ -level structure, the extension of ℓ -isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than $\ell+1$ extensions.
- ► The modular isogeny chain is a potentially-non injective image of the isogeny chain.
- ▶ Rigidifying automorphisms should also shorten the distance to which we need to go in order to differentiate 2 points (two torsion of $\mathcal{C}(\mathcal{O})$ may lift to non 2-torsion point in $\mathcal{C}(\mathcal{O}, \Gamma)$).

There are multiple reasons to add level structure to our construction:

- ▶ With an ℓ -level structure, the extension of ℓ -isogenies by modular correspondences allows one to automatically remove the dual isogeny (backtracking): there are ℓ rather than $\ell+1$ extensions.
- ► The modular isogeny chain is a potentially-non injective image of the isogeny chain.
- ▶ Rigidifying automorphisms should also shorten the distance to which we need to go in order to differentiate 2 points (two torsion of $\mathcal{C}(\mathcal{O})$ may lift to non 2-torsion point in $\mathcal{C}(\mathcal{O}, \Gamma)$).
- q-modular polynomial of higher level are smaller.

ISOGENY GRAPHS WITH LEVEL STRUCTURE

For any congruence subgroup Γ of level coprime to the characteristic, we have a covering $G_S(E,\Gamma) \to G_S(E)$ whose vertices are pairs $(E,\Gamma(P,Q))$ of supersingular elliptic curves/ \mathbb{F}_{p^2} and a Γ -level structure, and edges are isogenies $\psi: (E,\Gamma(P,Q)) \to (E',\Gamma(P',Q'))$ such that $\psi(\Gamma(P,Q)) = \Gamma(P',Q')$.

Eg. $\Gamma_0(N)$ -structures.

Vertices (E, G) with $G \le E[N]$ of order N $\operatorname{End}(E, G) = \{\alpha \in \operatorname{End}(E) \mid \alpha(G) \subseteq G\}$ isomorphic to Eichler order.

On the left the $\Gamma_0(3)$ supersingular 2-isogeny graph.

14 \leftrightarrow { $(E_0, G_1), (E_0, G_2), (E_0, G_3)$ } where G_1, G_2, G_3 maps to each other under the automorphism of E_0 ; they define 3 isogenies to E_3 .

SOME MODULAR CURVES OF INTEREST

WEBER INITIALIZATIONS - AN EXAMPLE OF GRAPHS

 $\mathbb{C}(\sqrt{-7})$ and

We orient the supersingular 2-isogeny graph in characteristic 61 by $\mathbb{Q}(\sqrt{2})$ we then climb the Weber modular tower.

Weber Modular Polynomials

$$\Psi_2(x, y) = (x^2 - y)y + 16x$$
 $\Psi_3(x, y) = x^4 - x^3y^3 + 8xy + y^4$

FORMAL ORIENTATIONS

FORMAL GROUP LAWS

Let Ω be any commutative ring with multiplicative identity 1 and $\Omega[\![\tau]\!]$ its ring of formal power series.

Definition

A formal group law $\mathcal F$ defined over Ω is a power series $F\in\Omega[\![X,Y]\!]$ such that

- ► F(X, 0) = X
- F(X,Y) = F(Y,X)
- ► F(X, F(Y, Z)) = F(F(X, Y), Z)

Notice that this implies that

$$F(X, Y) = X + Y + XYG(X, Y) \quad G \in \Omega[X, Y]$$

FORMAL GROUPS

Generally a formal group law is just a group operation with no underlying group. However, if the ring Ω is local and complete and the variables are assigned values from the maximal ideal $\mathfrak m$ of Ω , then the power series defining the formal group will converge in Ω , thus giving rise to a group.

Definition

The formal group associated to \mathcal{F}/Ω , denoted $\mathcal{F}(\Omega)$ or $\mathcal{F}(\mathfrak{m})$, is the set \mathfrak{m} together with the group operation

$$x \oplus_{\mathcal{F}} y = F(x, y) \quad \forall x, y \in \mathfrak{m}$$

For example, if R is a commutative ring with 1 and $\Omega = R[\![\tau]\!]$, then $\mathfrak{m} = \tau R[\![\tau]\!]$ and a formal group law is a power series $F \in R[\![X,Y]\!]$ with zero constant term that makes $(\tau R[\![\tau]\!], \oplus_F)$ an abelian group.

EXAMPLES OF FORMAL GROUPS

Proposition

Let (G, +) be an abelian group with identity 0_G . Suppose there is a one-to-one map $T : \tau R[\![\tau]\!] \to G$ such that $T(0) = 0_G$, and a power series $F \in R[\![X, Y]\!]$ with zero constant term such that

$$T(g) + T(h) = T(F(g, h)) \quad \forall g, h \in \tau R[\![\tau]\!]$$

Then *F* defines a formal group law.

Example. If $G = R[\![\tau]\!]$ under addition, and T is the inclusion $\tau R[\![\tau]\!] \hookrightarrow G$, F(X,Y) = X + Y defines the additive group law.

Example. If $G = R[[\tau]]^{\times}$ under multiplication, and T is the $g \mapsto 1 + g$, then

$$T(g)T(h) = (1+g)(1+h) = 1+g+h+gh = T(g+h+gh)$$

and F(X, Y) = X + Y + XY defines the multiplicative formal group law.

Example. If *E* is an elliptic curve over $L = \operatorname{Frac}(R[\tau])$ we can construct a map $\tau R[\tau] \to E(L)$ and find a power series defining a formal group law.

HOMOMORPHISMS OF FORMAL GROUPS

Definition

If \mathcal{F} and \mathcal{F}' are formal group laws, then a homomorphism from $\mathcal{F} \to \mathcal{F}'$ is a power series $U \in \tau R[\![\tau]\!]$ such that

$$U(F(X,Y)) = F'(U(X), U(Y))$$

In other words, U is such that $g\mapsto U(g)$ defines a homomorphism between the underlying groups.

Let $\mathcal{F}_1, \mathcal{F}_2$ be two formal group laws associated with the power series $F_1, F_2 \in R[\![X,Y]\!]$ and with maps T_1, T_2 to the abelian groups G_1, G_2 . We can prove that if there are a group homomorphism $\psi: G_1 \to G_2$ and a power series $U \in \mathcal{T}R[\![\tau]\!]$ such that

$$\psi(T_1(g)) = T_2(U(g))$$

then U is a homomorphism of formal group (laws).

HOMOMORPHISMS OF FORMAL GROUPS - EXAMPLES

Example. Let $G_1 = G_2 = G$, $T_1 = T_2 = T$, $F_1 = F_2 = F$, and $\psi(g) = ng$, $n \in \mathbb{Z}$. Then U = [n] is defined recursively by [0] = 0, $[1] = \tau$ and

$$[i+1]U=[i]\tau\oplus_F\tau.$$

Example. For the additive formal group law, T is the inclusion $\tau R[\![\tau]\!] \hookrightarrow R[\![\tau]\!]$ and we get $ng = \psi(T(g)) = T(U(g)) = [n](g)$. So that $[n](\tau) = n\tau$.

Example. For the multiplicative formal group law we have $\psi(T(g)) = (1+g)^n$ and $T(U(g)) = 1 + \lceil n \rceil g$ so that

$$[n](\tau) = \sum_{i=1}^{n} \binom{n}{i} \tau^{i}$$

PARAMETRIZATION OF AN ELLIPTIC CURVE

Let E be an elliptic curve over a field K. We embed E in \mathbb{P}^2_K as a Weierstrass curve

$$W(X, Y, Z) = Y^2Z + a_1XYZ + a_3YZ^2 - X^3 - a_2X^2Z - a_4XZ^2 - a_6Z^3$$

with O = (0:1:0). We choose local parameters at O: z = -X/Y and w = -Z/Y. In particular, the pair (z, w) satisfy an algebraic relation

$$f_E(z, w) = z^3 + a_2 z^2 w + a_4 z w^2 + a_6 w^3 - w + (a_1 z + a_3 w) w$$

which can be used for Hensel lifting

$$w(z) = z^3 + a_1 z^4 + (a_1^2 + a_2)z^5 + \dots$$

to a local point at O.

Lemma

We have $W(\tau, -1, w(\tau)) = 0$ in $R[\tau]$. If $f, g \in \tau R[\tau]$ and W(f, -1, g) = 0 then $g = w \circ f$.

FORMAL GROUP LAW OF AN ELLIPTIC CURVE

L.COLÒ

Let *E* be an elliptic curve over a field *K*. Let *L* be the quotient field of $K[\tau]$. We can consider points in E(L). Let *R* be a subring of *K* containing 1 and all the a_i 's.

We construct a formal group law by embedding $\tau R[\![\tau]\!]$ into E(L) and stealing its group law.

Consider points of the form $(z, 1, w) \in E(K)$. We have an embedding

$$T: \tau R[\![\tau]\!] \hookrightarrow E(L)$$
 $f \mapsto (f, -1, w(f))$

and we can find a power series F which gives rise to a formal group law.

$$F(X, Y) = X + Y - a_1XY - a_2(X^2Y + XY^2) + \text{higher terms}$$

Let (R, \mathfrak{m}) be any complete local K-algebra. We let \widehat{E} be the formal completion of E at O. Then we have an isomorphism

$$\mathfrak{m} \xrightarrow{\cong} \widehat{E}(R)$$
 $z \mapsto (z, w(z))$

where \mathfrak{m} is equipped with the group structure $z_1 \oplus z_2 = F_E(z_1, z_2)$.

FORMAL HOMOMORPHISMS ARISING FROM ISOGENIES

An isogeny of elliptic curves over K gives rise to a homomorphism of the corresponding formal group laws over K.

Let $I: E \to E'$ be an isogeny over K given by

$$I(X, Y, Z) = (f_1(X, Y, Z), f_2(X, Y, Z), f_3(X, Y, Z))$$

We get

$$\frac{f_1(X, Y, Z)}{f_2(X, Y, Z)} = \frac{f_1(z, -1, s)}{f_2(z, -1, s)} \in \mathfrak{m}$$

and we can expand $U = f_1/f_2$ as a power series, i.e., $U(\tau) = \sum_{i=1}^{+\infty} u_i \tau^i$.

Proposition

Let E, E', E'' be elliptic curves over K and F, F', F'' the associated formal group laws. If $I: E \to E'$ is an isogeny, then $U \in \text{Hom}(F, F')$. This defines an embedding $\text{Isog}(E, E') \hookrightarrow \text{Hom}(F, F)$. If $I': E' \to E''$ and I' corresponds to $U' \in \text{Hom}(F', F'')$ then $I' \circ I$ corresponds to $U' \circ U \in \text{Hom}(F, F'')$.

FORMAL ARITHMETIC - EXAMPLE

Let F be the formal group law over R of E. Let $g \in \tau R[\![\tau]\!]$.

$$[-1]\mathcal{T}(g) = [-1](g, -1, w(g)) = \left(\frac{-g}{1 - a_1 g - a_3 w(g)}, -1, \frac{-w(g)}{1 - a_1 g - a_3 w(g)}\right)$$

and by the Lemma above this is $T(\frac{-g}{1-a_1g-a_3w(g)})$. This means that

$$\widehat{[-1]} = \frac{-\tau}{1 - a_1 \tau - a_3 w(\tau)} = -\tau \sum_{n=0}^{+\infty} (a_1 \tau + a_3 w)^n$$

A similar calculation for [2] yields

$$[2] = 2\tau + \text{higher terms}$$

FORMAL ARITHMETIC

More in general, for any $n \in \mathbb{Z}$, formal scalar multiplication $\widehat{[n]}$ satisfies:

$$\widehat{[n]} = nz + \text{higher terms}$$

In particular, by reversion of power series, if n is invertible in K, then the inverse of [n] is well-defined:

$$\widehat{[n]}^{-1} = \frac{1}{n}z + \cdots$$

It follows that $\mathbb{Z}_{(p)} \subseteq \operatorname{End}(\widehat{E})$.

N.B. Here we are indeed identifying z with (z, w) under $\mathfrak{m} \cong \widehat{E}(R)$ we hereafter write simply $\widehat{\alpha}(\tau) = \alpha_1 z + \alpha_2 z^2 + \ldots$ for a formal morphism $\widehat{\alpha}$.

FORMAL ISOGENIES

Let $\alpha: E \to F$ be an isogeny of elliptic curves over K, whose degree n is invertible in K, let β be its dual isogeny, and let

$$\widehat{\alpha}:\widehat{E}\longrightarrow\widehat{F}$$
,

be its formal completion, given by $\widehat{\alpha}(z) = \alpha_1 z + \alpha_2 z^2 + \cdots$.

Since $\beta \circ \alpha = [n]$, we have

$$\widehat{\beta}(z) = \beta_1 z + \dots = \frac{n}{\alpha_1} z + \dots$$

and $\widehat{\alpha}$ is invertible in $\text{Hom}(\widehat{E}, \widehat{F})$, with inverse:

$$\widehat{\alpha}^{-1}(z) = \widehat{[n]}^{-1} \circ \widehat{\beta}(z) = \frac{1}{\alpha_1} z + \cdots$$

The isogeny is *normalized* if $\alpha_1 = 1$.

FORMAL ENDOMORPHISM RINGS

It follows that for $p = \operatorname{char}(k) > 0$, we have

$$\mathbb{Z}_{(p)}\otimes_{\mathbb{Z}}\operatorname{End}(E)\subseteq\operatorname{End}(\widehat{E})$$

and more generally $\mathbb{Z}_{(p)} \otimes_{\mathbb{Z}} \text{Hom}(E, F) \subseteq \text{Hom}(\widehat{E}, \widehat{F})$. In fact the formal endomorphism ring contains the completion:

$$\mathbb{Z}_{(p)} \otimes_{\mathbb{Z}} \operatorname{End}(E) \subseteq \operatorname{End}(E)_{\mathfrak{P}} \subseteq \operatorname{End}(\widehat{E}),$$

of the endomorphism ring at the prime

$$\mathfrak{P} = \mathsf{Hom}(E^{\sigma}, E)\pi \subset \mathsf{End}(E),$$

where $\pi: E \to E^{\sigma}$ is the Frobenius *p*-isogeny.

$$\operatorname{End}(E)_{\mathfrak{P}} \cong \begin{cases} \mathbb{Z}_p & \text{if } E \text{ is ordinary, or} \\ \mathcal{O}_{\mathfrak{P}} & \text{if } E \text{ is supersingular,} \end{cases}$$

where $\mathcal{O}_{\mathfrak{P}}$ is the maximal \mathbb{Z}_p -order of the nonsplit quaternion algebra over \mathbb{Q}_p .

FORMAL ISOGENY PULLBACK

We use the principle that a formal isogeny of degree coprime to p is invertible to equip an elliptic curve E with formal quaternionic multiplication.

Suppose the $p\equiv 11 \bmod 12$, and let E_0 and E_1 be elliptic curves oriented by

$$\mathbb{Z}[j] \cong \mathbb{Z}[\zeta_3]$$
 and $\mathbb{Z}[i] \cong \mathbb{Z}[\zeta_4]$,

respectively. Let $\alpha: E_0 \to E$ and $\beta: E_1 \to E$ be (smooth) isogenies of degree coprime to p.

$$j \quad E_0 \longrightarrow E \longrightarrow E \longrightarrow E \longrightarrow E_1$$

We define:

$$\widehat{j} = \widehat{\alpha} \circ \widehat{j} \circ \widehat{\alpha}^{-1} \text{ and } \widehat{i} = \widehat{\beta} \circ \widehat{i} \circ \widehat{\beta}^{-1} \text{ in End}(\widehat{E}).$$

Then we have an effective subring $\mathbb{Z}_{(p)}[\widehat{i},\widehat{j}] \subseteq \operatorname{End}(\widehat{E})$.

ORIENTATIONS OF SUPERSINGULAR FORMAL GROUPS

Let $E_0 \xrightarrow{\phi_0} E_1 \xrightarrow{\phi_1} \cdots \xrightarrow{\phi_{n-1}} E_n$ be an ℓ -isogeny chain. The formal group functor \mathcal{F} induces a formal ℓ -isogeny chain:

$$\mathcal{F}(E_0) \xrightarrow{\mathcal{F}(\phi_0)} \mathcal{F}(E_1) \xrightarrow{\mathcal{F}(\phi_1)} \cdots \xrightarrow{\mathcal{F}(\phi_{n-1})} \mathcal{F}(E_n),$$

and given an endomorphism ψ of E_0 , we define $\mathcal{F}(\psi)_0 = \mathcal{F}(\psi)$ and recursively, for each *i*, a formal endomorphism $\mathcal{F}(\psi)_{i+1}$ of $\mathcal{F}(E_{i+1})$:

$$\mathcal{F}(\psi)_{i+1} = \mathcal{F}([\ell])^{-1} \circ \mathcal{F}(\phi_i) \circ \mathcal{F}(\psi)_i \circ \mathcal{F}(\hat{\phi}_i).$$

We derive conditions under which an endomorphism ϕ of E_0 induces an integral formal endomorphism of $\mathcal{F}(E_i)$.

EFFECTIVE FORMAL ENDOMORPHISM RING

The problem remains to effectively cut out ℓ-torsion subgroups using formal endomorphisms: Given $\widehat{\alpha}$, determine $\ker(\widehat{\alpha}) \cap E[\ell]$, or more generally a map to $\mathbb{M}_2(\mathbb{F}_\ell) = \operatorname{End}(E[\ell]).$

Since formal endomorphisms operate locally at O, one needs an algorithm for extending $\widehat{\alpha}$ to $\widehat{E} \times E[\ell] \to \widehat{E} \times E[\ell]$.

In order to extend formal endomorphisms, we need instead a formal canonical lift to \mathbb{Z}_p (characteristic 0) and interpolation.

WORK IN PROGRESS

THANK YOU FOR YOUR ATTENTION

REFERENCES FOR THE FORMAL GROUP SECTION

- ► Antonia W. Bluher, Formal groups, elliptic curves, and some theorems of Couveignes, 1998.
- ▶ Joseph H. Silverman, The Arithmetic of Elliptic Curves, Ch IV.
- ► David Kohel's talk at SIAM Conference: https://videocollege.tue.nl/Mediasite/Channel/ siam-2023-event/watch/6d2dbd97b4d649ab8b0c52c06070db501d