Géométrie 2

L3 Mathématiques 2020/21, TD2

Leonardo Colò

II seance, 26 Janvier 2021

Exercice 1

Exercice. Déterminer lesquels des trois points suivants sont alignés dans l'espace affine \mathbb{R}^2 :

$$\left\{ \begin{pmatrix} \frac{1}{2}, 2 \end{pmatrix}, \begin{pmatrix} \frac{1}{2}, 100 \end{pmatrix}, \begin{pmatrix} \frac{1}{2}, \frac{\pi}{4} \end{pmatrix} \right\}$$

$$\left\{ (1, 1,), (1, -1), (-1, 1) \right\}$$

$$\left\{ \begin{pmatrix} \frac{5}{4}, \frac{9}{4} \end{pmatrix}, \begin{pmatrix} -\frac{3}{2}, -\frac{1}{2} \end{pmatrix}, \begin{pmatrix} \frac{1}{5}, \frac{6}{5} \end{pmatrix} \right\}$$

Exercice. Déterminer le sous-espace affine engendré par deux droites affines dans un espace affine de dimension finie.

Solution.

Exercice. Trouver un système d'équations cartésiennes du sous-espace affine engendré dans \mathbb{R}^4 par les deux droites

$$d = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix} \qquad \delta = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

Exercice. Dans l'espace affine \mathbb{R}^3 , on considère les droites D et D' d'équations :

$$D = \begin{cases} 2x + 3y - 4z = -1 \\ x - 2y + z = 3 \end{cases} \qquad D' = \begin{cases} 11x - y - 7z = \alpha \\ x + y + z = 1 \end{cases}$$

- (i) Les droites sont-elles parallèles, sécantes ou non-coplanaires ?
- (ii) Pouvez-vous donner un système d'équations de D comprenant une des équations données pour D'?
- (iii) Donner un système d'équations cartésiennes du sous-espace affine engendré dans \mathbb{R}^3 par les deux droites.

Prof. Serge Vlăduț

Exercice 3

Exercice 3

Exercice. Donner des équations pour la droite $D \subset \mathbb{R}^3$ passant par $P \equiv (1, 2, 3)$ et $Q \equiv (2, 0, 1)$. Donner aussi des équations pour \overrightarrow{D} .

Prof. Serge Vlăduț

Exercice 4

Exercice 4

Exercice. Trouver les valeurs de $a, b \in \mathbb{R}$ pour lesqueslles le point $M \equiv (1, a, b) \in \mathbb{R}^3$ est sur la droite passant par $P \equiv (0, 1, 0)$ et dirigée par $\overrightarrow{u} = (1, 1, 1)$.

Prof. Serge Vlăduț

Exercice 5

Exercice. Donner des équations pour la droite $D \subset \mathbb{R}^2$ passant par $P = \ell_1 \cap \ell_2$ et $Q = \ell_3 \cap \ell_4$ ou $\ell_1, \ell_2, \ell_3, \ell_4 \subset \mathbb{R}^2$ sont les droites d'équation

$$\ell_1: x + 5y - 8 = 0$$
 $\ell_2: 3x + 6 = 0$ $\ell_3: 5x - \frac{y}{2} = 1$ $\ell_4: x - y = 5$

Exercice 6

Exercice. Dans l'espace affine de dimension 3, on considère quatre points non coplanaires A, B, C et D. On note M_1 le milieu de AB, M_2 le milieu de BC, M_3 le milieu de CD et M_4 le milieu de DA.

Montrer que les points M_1 , M_2 , M_3 et M_4 sont dans un même plan.

Que peut-on dire des milieux de AC et de BD?

Prof. Serge Vlăduț

L3 Mathématiques 2020/21

Exercice 7

Exercice. Soient $P \equiv (2,3) \in \mathbb{R}^2$ et $Q \equiv (11, -\sqrt{5}) \in \mathbb{R}^2$. Trouver le points qui divisent le segment $\{P,Q\}$ en 4 partie égales.

Exercice 8 L3 Mathématiques 2020/21

Exercice 8

Exercice. Soit $D \subset \mathbb{R}^3$ la droite passant par $P \equiv (0, 1, 0)$ dirigée par $\overrightarrow{u} = (1, 1, 1)$. De même, soit $D' \subset \mathbb{R}^3$ la droite passant par $P' \equiv (1, 1, 1)$ dirigée par $\overrightarrow{u}' = (a, 1, b)$. Déterminer en fonction de a et b les positions respectives de D et D'.

Exercice. Montrer que la droite $D \subset \mathbb{R}^3$ qui passe par $A \equiv (4, 9, 4)$ et $B \equiv (13, -3, 7)$ rencontre la droite d'équations

$$\frac{x-5}{2} = \frac{y+4}{9} = \frac{z-1}{4}$$

Exercice 10 L3 Mathématiques 2020/21

Exercice 10

Exercice. Donner une équation pour le plan $H \subset \mathbb{R}^3$ passant par $P \equiv (1,2,1)$ et dirigé par les vecteurs $\overrightarrow{u} = (0,3,1)$ et $\overrightarrow{v} = (1,0,2)$. Donner aussi une équation pour \overrightarrow{H} .

Exercice 11

Exercice. Soient $a, b, c \in \mathbb{R}$ non-nuls. Donner une équation pour le plan $H \subset \mathbb{R}^3$ qui coupe les axes en (a, 0, 0), (0, b, 0) et (0, 0, c). Donner aussi une équation pour \overline{H} .

Prof. Serge Vlăduț

Exercice 12 L3 Mathématiques 2020/21

Exercice 12

Exercice. Donner une équation pour le plan $H \subset \mathbb{R}^3$ qui passe par (1,2,3), (2,4,5) et (4,3,1). Donner aussi une équation pour \overrightarrow{H} .

Exercice. Dans chacun des cas suivants, donner des équations pour le plan $H \subset \mathbb{C}^3$ qui passe par P et parallèle au plan Π :

(i)
$$P \equiv (-1, 2, 2), \quad \Pi: x + 2y + 3z + 1 = 0;$$

(ii)
$$P \equiv (i, i, i), \quad \Pi : 2x - y = 0;$$

(iii)
$$P \equiv (i, i, i + 1), \quad \Pi : iy - 2z + 3i + 10 = 0;$$

(iv)
$$P \equiv (1 - 2i, 1, \pi i), \quad \Pi : iy = 3.$$

Exercice. Dans chacun des cas suivants, verifier si les droites ℓ_1 et ℓ_2 dans \mathbb{R}^3 sont coplanaires et, dans le cas où ils le sont, donner des équations pour le plan qui les contient

(i)
$$\ell_1: x = 1 + t$$
, $y = -t$, $z = 2 + 2t$, $\ell_2: x = 2 - t$, $y = -1 + 3t$, $z = t$;

(ii)
$$\ell_1: 2x + y + 1 = y - z - 2 = 0$$
, $\ell_2: x = 2 - t$, $y = 3 + 2t$, $z = 1$;

(iii)
$$\ell_1: 2x + 3y - z = 5x + 2z - 1 = 0$$
, $\ell_2: 3x - 3y + 3z - 1 = 5x + 2z + 1 = 0$;

(iv)
$$\ell_1: 2x + z - 1 = y - z + 1 = 0$$
, $\ell_2: 2x - y + 3z = 2x + y - 3 = 0$;

(v)
$$\ell_1: x+1=z-2=0$$
, $\ell_2: 2x+y-2z+6=y+z-2=0$.

Exercice 15

Exercice. Soient $m, p \in \mathbb{R}$. Montrer que les plans d'équations

$$mx - (2m + 1)y + (m + 3)z - 2 = 0$$

et

$$4x + (m-12)y + 2pz - 4 = 0$$

se rencontrent dans \mathbb{R}^3 .

Prof. Serge Vlăduț

Exercice 16

Exercice 16

Exercice. Soient $a, b \in \mathbb{R}$ distincts non-nuls avec $|a| \neq |b|$. Donner une équation de la droite $D \subset \mathbb{R}^2$ passant par $P \equiv (a, b)$ et par l'intersection des droites d'équation

$$\frac{x}{a} + \frac{y}{b} = 1$$

et

$$\frac{x}{b} + \frac{y}{a} = 1$$

Exercice. Soit (E, \overrightarrow{E}) un espace affine de dimension 2 muni d'un repère cartésien $R = (O, \overrightarrow{i}, \overrightarrow{j})$.

On considère quatre droites d, d', δ , δ' d'équations respectives

$$d: ax + by + c = 0$$
 $d': a'x + b'y + c' = 0$ $\delta: ux + vy + w = 0$ $\delta': u'x + v'y + w' = 0$

On suppose que d et d' sont sécantes en un point I et que δ et δ' sont sécantes en un point J. On suppose que $I \neq J$, donner une équation de la droite (IJ).

Exercice. Soit $a \in \mathbb{R}$ et soit E_a l'ensemble des matrices dans la base canonique des applications linéaire de $\mathcal{L}(\mathbb{R}^2)$ qui trasforment le vecteur (1,1) en vecteur (-a,0).

- (i) Montrer que E_a est un sous-espace affine de $M_2(\mathbb{R})$ et en donner un point et une base de son espace directeur.
- (ii) Soit $F = \{A \in M_2(\mathbb{R}) \mid \operatorname{tr}(A) = 1\}$, et soit $D_a = F \cap E_a$. Montrer que D_a est un sous-espace affine de $M_2(\mathbb{R})$ et en donner un point et une base de son espace directeur. Calculer $\dim(D_a \cap E_a)$ et $\dim\langle D_a, E_a \rangle$ (l'éspace engendré par D_a et E_a) comme fonctions de $a \in \mathbb{R}$.